
RETRO GAMING

RASPBERRY PIW I T H

164 PAGES OF
VIDEO GAME PROJECTS

FROM THE MAKERS OF THE OFFICIAL RASPBERRY PI MAGAZINE

BUILD AN
ARCADE

MACHINE

Tutorial

raspberrypi.org/magpi 99April 2016

LEARN | CODE | MAKE

ONLY £3.99
magpi.cc/store

from

ESSENTIALS

ESSENTIALS

From the makers of the
official Raspberry Pi magazine

GET THEM
DIGITALLY:

OUT NOW IN PRINT

http://www.raspberrypi.org/magpi
http://store.rpipress.cc
https://itunes.apple.com/us/app/the-magpi-magazine/id972033560
https://play.google.com/store/apps/details?id=com.raspberry.magpi

raspberrypi.org/magpi 3March 2015

EDITORIAL
Editor: Lucy Hattersley
Features Editor: Rob Zwetsloot
Book Production Editor: Phil King
Contributors: Bob Clagett, David Crookes,
PJ Evans, Rosie Hattersley, KG Orphanides,
the Ruiz Brothers, Mark Vanstone

DESIGN
Critical Media: criticalmedia.co.uk
Head of Design: Lee Allen
Designers: Sam Ribbits. Mike Kay
Illustrator: Sam Alder, Dan Malone

PUBLISHING
Publishing Director: Russell Barnes
russell@raspberrypi.org

Advertising: Charlotte Milligan
charlotte.milligan@raspberrypi.org
Tel: +44 (0)7725 368887

Director of Communications: Liz Upton
CEO: Eben Upton

This official product is published by Raspberry Pi (Trading) Ltd., Maurice Wilkes Building, Cambridge, CB4 0DS. The publisher,
editor and contributors accept no responsibility in respect of any omissions or errors relating to goods, products or services
referred to or advertised in the magazine. Except where otherwise noted, content in this magazine is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0). ISBN: 978-1-912047-70-3.

GET IN TOUCH magpi@raspberrypi.orgFIND US ONLINE magpi.cc

This bookazine is printed on paper sourced from
sustainable forests and the printer operates an
environmental management system which has
been assessed as conforming to ISO 14001.

DISTRIBUTION
Seymour Distribution Ltd
2 East Poultry Ave, London,
EC1A 9PT | +44 (0)207 429 4000

MAGAZINE SUBSCRIPTIONS
Unit 6, The Enterprise Centre,
Kelvin Lane, Manor Royal,
Crawley, West Sussex,
RH10 9PE | +44 (0)207 429 4000
magpi.cc/subscribe
magpi@subscriptionhelpline.co.uk

BACK TO THE
OLD SCHOOL
R etro gaming has never been as popular as it is

today. We have an enduring affection for classic
games that goes beyond the hit of nostalgia. There’s

a vibrant indie development scene based on making
modern video games in a style of 8- and 16-bit classics.

The gaming scene of the 1980s was a vibrant, creative,
and fascinating period. Games were made by small
teams and even individuals. Projects were personal
and inspiration was taken from the mundane to the
fantastical. It was a far cry from the millions of dollars and
massive production teams of today’s mega-hits.

This book enables you to build a classic retro-games
console using an incredible low-cost British computer
called Raspberry Pi. These computers cost from just $35.

We’ll show you how to set up the retro gaming operating
system, attach a controller, and wirelessly add games to
your console. Then kick back and enjoy classic games.

And by studying the classics, you can learn to make your
own games. We’ll show you how to code retro hits using a
simple computer language called Python.

Build your gaming system; play classic games; learn to
code. What an incredible skill. What an amazing thing to
do! We hope you enjoy this retro gaming experience.

Lucy Hattersley

WELCOME

http://raspberrypi.org/magpi
http://criticalmedia.co.uk
mailto:russell@raspberrypi.org
mailto:charlotte.milligan@raspberrypi.org
mailto:magpi@raspberrypi.org
http://magpi.cc
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://magpi.cc/subscribe
mailto:magpi@subscriptionhelpline.co.uk
https://itunes.apple.com/gb/app/the-magpi-the-official-raspberry-pi-magazine/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB

CONTENTS
08 	� Raspberry Pi

QuickStart Guide
Set up your Raspberry Pi
and operating system

14 	� Set up a Raspberry Pi
retro games console
Discover classic gaming
on Raspberry Pi

22 	� Picade
Mini-bartop arcade cabinet

24 	� TinyPi Pro
Minuscule retro game console

26 	� Wireless USB
Game Controller
One of the best controllers around

28 	� Deluxe Arcade
Controller Kit
All-in-one joystick and case

30 	� PiDP-11
Recreate a 1970s computer

34 	� Using a retro computer
Have fun with an emulated
classic computer

36 	� Amazing emulators
How to use them and what to do
with them

38 	� Put Raspberry Pi inside
a classic computer
Resurrect a ZX Spectrum case
and keyboard

42 	� Turn Raspberry Pi into
an Amiga
Recapture the glory days of
16-bit computing

44 	� Commodore monitor
A tiny replica monitor created for
Commodore 64 gaming

06 SET UP YOUR SYSTEM

20 RETRO GAMING
HARDWARE

32 RETRO COMPUTING

44

22

24

28

56

Contents04

48 	� Get started with
Pygame Zero
Start writing computer games on
Raspberry Pi

54 	� Simple Brian
Recreate a classic electronic game
using Pygame Zero

60 	� Scrambled Cat
Create a sliding tile
puzzle game

66 	� PiVaders – part 1
Start making a single-screen
shoot-’em-up

74 	� PiVaders – part 2
Add sound effects, high scores,
levels, and more

82 	� Hungry Pi-Man – part 1
Create a classic maze game with
Pygame Zero

90 	� Hungry Pi-Man – part 2
Add better enemy AI, power-ups,
levels, and sound

100 	�AmazeBalls – part 1
Start programming an isometric
3D game

106 	�AmazeBalls – part 2
Create a larger, scrolling 3D
maze map

112 	� AmazeBalls – part 3
Improve your game with
enemies and dynamite

120 	�Mini Lunchbox Arcade
Marvel at this mini retro arcade
in a box

122 	�4D Arcade Machine
Raspberry Pi-powered game with
extra interactive elements

126 	�Build a portable console
Create the ultimate retro handheld
with PiGRLL 2

140 	�Make your own
pinball machine
Build a table with this
step-by-step guide

146 	�Build an arcade machine
Make your own retro cabinet with
Raspberry Pi

46 MAKE YOUR
OWN GAMES

118 ARCADE PROJECTS

66

38

100

126120

146

05Retro Gaming with Raspberry Pi

EVERYTHING YOU NEED
TO GET UP AND RUNNING

• �Gather all the equipment required

• �Set up your Raspberry Pi hardware

• �Prepare your microSD card

• �Discover classic gaming
on Raspberry Pi

• �Install the Lakka
operating system

• Configure your game controller

08 	� RASPBERRY PI
QUICKSTART GUIDE

14 	� SET UP A RASPBERRY PI
RETRO GAMES CONSOLE

SET UP
YOUR SYSTEM

 �Turning a Raspberry Pi
device into a retro games
console is a fun project

Set up your system06

07Retro Gaming with Raspberry Pi

TUTORIAL

Raspberry Pi QuickStart Guide08

Setting up Raspberry Pi is pretty straightforward.
Just follow the advice of Rosie Hattersley

C ongratulations on becoming a Raspberry
Pi explorer. We’re sure you’ll enjoy
discovering a whole new world of computing

and the chance to handcraft your own games,
control your own robots and machines, and share
your experiences with other Raspberry Pi fanatics.

Getting started won’t take long: just corral all the
bits and bobs on our checklist, plus perhaps a funky
case. Useful extras include some headphones or
speakers if you’re keen on using Raspberry Pi as a
media centre or gaming machine.

To get set up, simply format your microSD card,
download NOOBS, and run the Raspbian installer.
This guide will lead through each step. You’ll find
the Raspbian OS, including coding programs and
office software, all available to use. After that,
the world of digital making with Raspberry Pi
awaits you.

What you need
All the bits and bobs you need
to set up a Raspberry Pi computer

A Raspberry Pi
Whether you choose a Raspberry Pi 4, 3B+, 3B,
Pi Zero, Zero W, or Zero WH (or an older model
of Raspberry Pi), basic setup is the same. All
Raspberry Pi computers run from a microSD card,
use a USB power supply, and feature the same
operating systems, programs, and games.

Raspberry Pi
QuickStart Guide

09Retro Gaming with Raspberry Pi

TUTORIAL

8GB microSD card
You’ll need a microSD card with a capacity of
8GB or greater. Your Raspberry Pi uses it to store
games, programs, and photo files and boots from
your operating system, which runs from it. You’ll
also need a microSD card reader to connect the
card to a PC, Mac, or Linux computer.

Mac or PC computer
You’ll need a Windows or Linux PC, or an Apple
Mac computer to format the microSD card and
download the initial setup software for your
Raspberry Pi. It doesn’t matter
what operating system
this computer runs,
because it’s just
for copying the
files across.

USB keyboard
Like any computer, you need a means to enter web
addresses, type commands, and otherwise control
Raspberry Pi. You can use a Bluetooth keyboard,
but the initial setup process is much easier with
a wired keyboard. Raspberry Pi sells an official
Keyboard and Hub (magpi.cc/keyboard).

USB mouse
A tethered mouse that physically attaches to your
Raspberry Pi via a USB port is simplest and, unlike a
Bluetooth version, is less likely to get lost just when
you need it. Like the keyboard, we think it’s best to
perform the setup with a wired mouse. Raspberry Pi
sells an Official Mouse (magpi.cc/mouse).

Power supply
Raspberry Pi uses the same type
of USB power connection as your
average smartphone. So you can
recycle an old USB to micro USB cable
(or USB Type-C for Raspberry Pi 4)
and a smartphone power supply.
Raspberry Pi also sells official power
supplies (magpi.cc/products), which
provide a reliable source of power.

Display and HDMI cable
A standard PC monitor is ideal, as
the screen will be large enough
to read comfortably. It needs
to have an HDMI connection,
as that’s what’s fitted on your
Raspberry Pi board. Raspberry
Pi 3B+ and 3A+ both use regular
HDMI cables. Raspberry Pi 4 can
power two HDMI displays, but
requires a less common micro-
HDMI to HDMI cable (or adapter);
Raspberry Pi Zero W needs a mini HDMI to
HDMI cable (or adapter).

USB hub
Instead of standard-size USB
ports, Raspberry Pi Zero has
a micro USB port (and usually
comes with a micro USB to USB
adapter). To attach a keyboard
and mouse (and other items) to a
Raspberry Pi Zero W or 3A+, you
should get a four-port USB hub
(or use a keyboard with a hub
built in).

http://magpi.cc/keyboard
http://magpi.cc/mouse
http://magpi.cc/universalpower

TUTORIAL

Raspberry Pi QuickStart Guide10

01 Hook up the keyboard
Connect a regular wired PC (or Mac)

keyboard to one of the four larger USB A sockets on
a Raspberry Pi 4 / 3B+/ 3. It doesn’t matter which
USB A socket you connect it to. It is possible to
connect a Bluetooth keyboard, but it’s much better
to use a wired keyboard to start with.

02 Connect a mouse
Connect a USB wired mouse to one of the

other larger USB A sockets on Raspberry Pi. As
with the keyboard, it is possible to use a Bluetooth
wireless mouse, but setup is much easier with a
wired connection.

03 HDMI cable
Next, connect Raspberry Pi to your display

using an HDMI cable. This will connect to one
of the micro-HDMI sockets on the side of a
Raspberry Pi 4, or full-size HDMI socket on a
Raspberry Pi 3/3B+. Connect the other end of the
HDMI cable to an HDMI monitor or television.

A regular wired mouse is connected
to any of the USB A sockets. A wired
keyboard is connected to another
of the USB A sockets. If you have a
Raspberry Pi 4, it's best to keep the
faster (blue) USB 3.0 sockets free for
flash drives or other components.

Raspberry Pi 4 / 3B+ / 3 has plenty of
connections, making it easy to set up

Set up
Raspberry Pi

A HDMI cable, such as ones used by most
modern televisions, is used to connect
Raspberry Pi to a TV or display. You'll need a
micro-HDMI to HDMI cable (or two) to set up
a Raspberry Pi 4. Or a regular HDMI cable for
Raspberry Pi 3B+ / 3 (or older) models.

11Retro Gaming with Raspberry Pi

TUTORIAL

01 Get it connected
If you’re setting up a smaller Raspberry

Pi Zero, you’ll need to use a micro USB to USB A
adapter cable to connect the keyboard to the
smaller connection on a Raspberry Pi Zero W. The
latter model has only a single micro USB port for
connecting devices, which makes connecting both
a mouse and keyboard slightly trickier than when
using a larger Raspberry Pi.

02 Mouse and keyboard
You can either connect your mouse to a

USB socket on your keyboard (if one is available),
then connect the keyboard to the micro USB
socket (via the micro USB to USB A adapter).
Or, you can attach a USB hub to the micro USB
to USB A adapter.

03 More connections
Now connect your full-sized HDMI cable

to the mini-HDMI to HDMI adapter, and plug the
adapter into the mini-HDMI port in the middle of
your Raspberry Pi Zero W. Connect the other end of
the HDMI cable to an HDMI monitor or television.

You'll need a couple of adapters to
set up a Raspberry Pi Zero / W / WH

Set up
Raspberry
Pi Zero

Raspberry Pi Zero W features a
mini-HDMI socket. You'll need
a mini-HDMI to full-sized HDMI
adapter like this to connect
your Raspberry Pi Zero W to an
HDMI display

You'll need this micro USB
to USB A adapter to connect
wired USB devices such as a
mouse and keyboard to your
Raspberry Pi Zero W

TUTORIAL

Raspberry Pi QuickStart Guide12

Use NOOBS to install Raspbian OS
on your microSD card and start your
Raspberry Pi

N ow you’ve got all the pieces together, it’s
time to install an operating system on your
Raspberry Pi, so you can start using it.

Raspbian is the official OS for Raspberry
Pi, and the easiest way to set up Raspbian on
your Raspberry Pi is to use NOOBS (New Out Of
Box Software).

If you bought a NOOBS pre-installed 16GB
microSD card (magpi.cc/huLdtN), you can skip
Steps 1 to 3. Otherwise, you’ll need to format a
microSD card and copy the NOOBS software to it.

01 Prepare to format
Start by downloading SD Card Formatter

tool from the SD Card Association website
(rpf.io/sdcard). Now attach the microSD card
to your PC or Mac computer and launch SD Card
Formatter (click Yes to allow Windows to run it).
If the card isn’t automatically recognised, remove
and reattach it and click Refresh. The card should
be selected automatically (or choose the right one
from the list).

02 Format the microSD
Choose the Quick Format option, then click

Format (if using a Mac, you’ll need to enter your
admin password). When the card has completed
the formatting process, it’s ready for use in your
Raspberry Pi. Leave the card in your computer
for now and note its location: Windows will often
assign it a hard drive letter, such as E; on a Mac it
will appear in the Devices part of a Finder window.

03 Download NOOBS
Download the NOOBS software from

rpf.io/downloads. NOOBS (New Out Of Box
System) provides a choice of Raspberry Pi
operating systems and installs them for you. Click
‘Download zip’ and save the file to your Downloads
folder. When the zip file download is complete,
double-click to launch and uncompress the folder.
You’ll need to copy all the files from the NOOBS
folder to your SD card. Press CTRL+A (⌘+A on a
Mac) to select all the files, then drag all the files
to the SD card folder. Once they’ve copied across,
eject your SD card. Be careful to copy the files inside
the NOOBS folder to the microSD card (not the
NOOBS folder itself).

Set up
the software

You’ll Need

> � �A Windows/Linux
PC or Apple Mac
computer

> � �A microSD card
(8GB or larger)

> � �A microSD to
USB adapter (or
a microSD to
SD adapter and
SD card slot on
your computer)

> � �SD Memory Card
Formatter
rpf.io/sdcard

> � �NOOBS
rpf.io/downloads

http://magpi.cc/huLdtN
http://rpf.io/sdcard
http://rpf.io/downloads
http://rpf.io/sdcard
http://rpf.io/downloads

TUTORIAL

13Retro Gaming with Raspberry Pi

04 Assemble your Raspberry Pi
Now it’s time to physically set up your

Raspberry Pi. Plug your PC monitor into the mains
and attach its HDMI cable to the corresponding
HDMI port on your Raspberry Pi. Plug in the power
supply but don't attach it to Raspberry Pi just yet.
Use two USB ports to attach keyboard and mouse.
Finally, remove the microSD card from the SD
card adapter and slot it into the underside of your
Raspberry Pi 4, 3B+, or 3. Raspberry Pi Zero W
owners will need to attach a USB hub to connect
mouse, keyboard, and monitor; the microSD card
slot is on the top of its circuit board.

05 Power up
Plug in your Raspberry Pi power supply

and, after a few seconds, the screen should come
on. When the NOOBS installer appears, you’ll
see a choice of operating systems. If you want
to skip the default operating system and build
a retro games system, move ahead to Step 4 on
page 15. But to see what Raspberry Pi can do as a
computer, tick Raspbian and click Install, then
click Yes to confirm. Installation takes its time but
will complete – eventually. After this, a message
confirming the success installation appears. Your
Raspberry Pi will prompt you to click OK, after
which it will reboot and load the Raspbian OS.

06 Get online
When Raspbian loads for the first time,

you need to set a few preferences. Click Next,
when prompted, then select your time zone and
preferred language and create a login password.
You’re now ready to get online. Choose your WiFi
network and type any required password. Once
connected, click Next to allow Raspbian to check
for any OS updates. When it’s done so, it may ask
to reboot so the updates can be applied.

Click the Raspberry icon at the top-left of the
screen to access items such as programming IDEs,
a web browser, media player, image viewer, games,
and accessories such as a calculator, file manager,
and text editor. You’re all set to start enjoying your
very own Raspberry Pi.

First, insert your microSD
card into Raspberry Pi

With the microSD card
fully inserted, connect
your power supply cable
to Raspberry Pi. A red
light will appear on the
board to indicate the
presence of power

Some features help you organise your growing
gaming collection and take screenshots of the
in-game action. For now, though, we’re looking
solely at getting you up and running with a classic
homebrew video game.

01 Get SD Card Formatter
We’re going to install Lakka RPI4 to a

blank microSD card using the OS installer NOOBS
(magpi.cc/noobs).

In this tutorial, we’re using a Windows PC
to format a microSD card and copy the NOOBS
files to the card (the process is identical for Mac
computers). We will then use the NOOBS card
with our Raspberry Pi 4 and set up Lakka. From
then on, our Raspberry Pi 4 will boot straight to
Lakka and let us run games.

First, download SD Formatter on a computer from
magpi.cc/sdcardformatter. Click ‘For Windows’ or
‘For Mac’ depending on your machine.

02 Format the card
We’re now going to format the microSD card

that you will use to boot Lakka on a Raspberry Pi.
Note that this completely wipes the card, so make
sure it contains nothing you need.

Insert the microSD card into your Windows
or Mac computer. You will need to use either
a USB SD card adapter or microSD card to SD
card adapter.

Close any alert windows that appear, and open
the SD Card Formatter app. Accept the terms and
conditions and launch the program. On a Windows
PC, click Yes to ‘Do you want to allow this app to
make changes to your device’ (you won’t see this
on a Mac; the approval comes later).

Lakka lets you relive the games of the past by enabling your
Raspberry Pi to emulate a host of retro computers and consoles

W hether you are nostalgic for the games
of yesteryear or you’re simply dying
to discover gaming’s rich history, all

you ultimately need to get stuck in is a bunch of
emulators and a stack of gaming ROMs.

In the past, however, this has also entailed
finding and downloading the BIOSes of various
machines and a fair bit of configuration.
Fortunately, with the software platform Lakka
installed on your Raspberry Pi 4, the path to
gaming glory is much smoother these days.

Lakka allows you to emulate arcade games as
well as titles originally released on a host of 8-bit,
16-bit, and even 32- and 64-bit systems.

Lakka is a Linux operating system (OS) based
on RetroArch (retroarch.com). Lakka is designed
to run games, and it turns a Raspberry Pi into a
powerful games system.

You can hook up a gamepad and even make use
of wireless controllers (there’s more about those
at magpi.cc/HpPSSV). It has an interface that will
be very familiar to anyone who has used modern
games consoles and because it is open-source, it
is constantly being improved.

You can run Lakka on any Raspberry Pi,
although Raspberry Pi 4 enables smoother
emulation of more recent consoles.

Lucy
Hattersley

Lucy is editor of The
MagPi magazine.
She enjoys retro
gaming; especially
making retro games.

magpi.cc

M
A

K
ER

Set up a Raspberry Pi
retro games console

You’ll Need

> � �Raspberry Pi 4

> � �USB or wireless
game controller,
e.g. magpi.cc/
vilrosgamepad

> � �Windows PC or
Mac computer 	
for setup

> � �Blank microSD card
(8GB or larger)

> � �SD Formatter
magpi.cc/
sdcardformatter

> � �NOOBS image file
magpi.cc/downloads

> � �A game ROM, e.g. 	
magpi.cc/bladebuster 	� NOOBS (New Out Of Box Software) is used to install

operating systems such as Lakka on Raspberry Pi

TUTORIAL

Set up a Raspberry Pi retro games console14 magpi.cc

http://magpi.cc/noobs
http://magpi.cc/sdcardformatter
http://retroarch.com
http://magpi.cc/HpPSSV
http://magpi.cc
http://magpi.cc/vilrosgamepad
http://magpi.cc/vilrosgamepad
http://magpi.cc/sdcardformatter
http://magpi.cc/sdcardformatter
http://magpi.cc/downloads
http://magpi.cc/bladebuster
http://magpi.cc
http://magpi.cc

The card should be assigned a letter under Select
Card. It is ‘D’ on our system. Check the Capacity
and other details to ensure you have the correct
card. Now click Format and Yes. On a Mac, you’ll be
asked to enter your Admin password.

03 Download NOOBS
Now visit magpi.cc/downloads and click the

NOOBS icon. Select ‘Download ZIP’ next to NOOBS.
The latest version of the NOOBS zip file

(currently NOOBS_v3_2_1.zip) will be saved to
your Downloads folder.

Extract the files from the NOOBS zip file (right-
click and choose Extract All and Extract). Now
open the extracted NOOBS folder (it’s important
to ensure you are using the extracted files and not
looking at the files inside the zip file. Make sure
you have opened the NOOBS_v3_2_1 folder and
not the NOOBS_v3_2_1.zip file.

You should see three folders – defaults, os, and
overlays – followed by many files beginning with
‘bcm2708...’. It is these folders or files you need to
copy to the microSD card.

Select all of the files inside the NOOBS folder
and copy them to the microSD card. When the files
have copied, eject and remove the microSD card
from your PC or Mac.

04 Boot to NOOBS
Now set up your Raspberry Pi 4. You’ll

need to connect a USB keyboard and HDMI display
for the installation process (you can remove the
keyboard later and use just a game controller).

The display does not have to be the television
you intend to use. It’s best to use the HDMI 0
port. We’re going to use a wireless LAN network
to connect to the internet, but you can connect
an Ethernet cable attached directly to your
modem/router.

Insert the microSD card into your Raspberry Pi
and attach the USB 3.0 power supply to power up.

05 Connect to wireless LAN
The NOOBS screen will appear, displaying

two installation options: Raspbian Full and
LibreELEC. To get further installation options, you
will need to be connected to the internet.

Connect Raspberry Pi directly to your modem/
router using an Ethernet cable; or click the ‘Wifi
networks (w)’ icon. The WiFi network selection
window appears; wait until it displays the local

 �To get further installation options on
the NOOBS screen, you will need to be
connected to the internet

Cores are the emulators
used to run retro games.
They are modular
components based on
classic systems and games

The Settings menu has options
to connect to a wireless
network, turn on Samba file
sharing, and set up a gamepad

TUTORIAL

Retro Gaming with Raspberry Pi 15magpi.cc

http://magpi.cc/downloads
http://magpi.cc
http://magpi.cc

07 Connect to the network
You need to connect Lakka to the network.

Use your cursor keys to navigate Lakka’s menus,
and head to the Settings list. Press the down
arrow and select ‘Wi-Fi’. Wait for Lakka to scan
the local networks.

Select your wireless LAN network and use the
keyboard to enter the Passphrase. The Lakka
interface will display the name of your wireless
network with ‘Online’ next to it.

08 Get a game
Now it’s time to find and play a game.

Games are downloaded as ROM files and added to
Lakka. These ROM files need a compatible core to
run (most but not all ROM files will run correctly).

We’ll use a Japanese homebrew ROM called
Blade Buster. Download it on your PC or Mac from
magpi.cc/bladebuster – click the ‘Blade Buster
Download’ link.

A file called BB_20120301.zip will appear in
your Downloads folder. Unlike NOOBS, you do not
extract the contents of this file – ROMs are run as
compressed zip files.

You now need to transfer this file from your
computer to your Raspberry Pi.

09 Turn on Samba
With your Raspberry Pi and PC on the same

network, go to the Settings menu in Lakka on your
Raspberry Pi and select Services. Highlight Samba
and turn it on by pressing X (or using right arrow).

Samba is installed by default on macOS and used
to be installed by default in Windows, but it has
recently become an optional installation.

In Windows 10, click on the Search bar and
type ‘Control Panel’. Click on Control Panel in
the search results. Now click ‘Programs’ and
‘Turn Windows features on or off’. Scroll down
to find ‘SMB 1.0/CIFS File Sharing Support’ and
click the ‘+’ expand icon to reveal its options.
Place a check in the box marked ‘SMB 1.0/CIFS
Client’. Click OK. This will enable Samba client
support on your Windows 10 PC so it can access
Raspberry Pi.

networks. Select your wireless network and enter
the password for it in the Password field. Then
click OK.

With Raspberry Pi connected to a network, you
get a much broader range of installation options.
Near the bottom will be Lakka_RPi4.

Use the arrow keys on your keyboard to select
Lakka and press the SPACE bar to add a cross to its
selection box (or use a connected mouse to select
the Lakka option).

Click Install and answer Yes to the Confirm
window. NOOBS will download and extract the
Lakka file system to the microSD card. Sit back and
wait for the system to be installed.

When it has finished, NOOBS will display ‘OS(es)
Installed Successfully’. Press ENTER on the
keyboard (or click OK with the mouse).

06 Starting Lakka
Raspberry Pi will restart and this time it will

boot into the Lakka operating system. You will see
a blue screen with a series of windows and ‘Load
Core’ will be highlighted. You can use the arrow
keys on the keyboard to navigate the menu, and X
to select a menu option, then Z to back up.

Highlight Load Core and press X to select it. Here
you will find a list of ‘cores’. These are the engines
that emulate different retro consoles and computers.

To test the system is working, highlight 2048 and
press X again. You’ll be returned to the main menu,
but this time you’ll see ‘Start Core’. Press X to start
the core and you’ll be presented with a classic game
called 2048. Use the arrow keys to slide the blocks
together. Matching numbers double in size, and
the aim is to make a 2048 block. Press ESC and ESC
again to return to the main Lakka menu.

Top Tip
SSH

You can also
use SSH to copy
files from your
computer to
Raspberry Pi. In
Lakka, enable SSH
in Services. You
can use a program
such as FileZilla to
copy files across.
See magpi.cc/ssh
for more
information.

 �Games are downloaded
as ROM files and added
to Lakka

	� Blade Buster, a
homebrew shoot-
’em-up, running on a
Raspberry Pi 4

Warning!

It is illegal to download
copyrighted game ROMs
from the internet. Please

respect the original maker
and seek a legal source
for retro gaming instead.

We use homebrew ROMs
made by modern makers

for classic systems.

magpi.cc/legalroms

TUTORIAL

Set up a Raspberry Pi retro games console16 magpi.cc

http://magpi.cc/bladebuster
http://magpi.cc/ssh
http://magpi.cc/legalroms
http://magpi.cc
http://magpi.cc

10 Transfer the ROM
Lakka may appear in the

left-hand column of your other
computer’s file browser (File
Explorer on a PC or Finder on a Mac).

If not, select Lakka’s main menu on your
Raspberry Pi, then choose Information and
Network Information.

Take note of the IP address. Enter that into the
File Explorer using the format:

\\insert.full.ip.address\

Ours, for example, is:
\\192.168.0.13\

Copy the Blade Buster zipped game to the ROMS
folder on Lakka.

Back on your Raspberry Pi, go to Load Content
> Start Directory in the Lakka menu and find the
BB_20120301.zip file. Click it before selecting
Load Archive. Choose FCEUmm as the core to
play it on.

Press ENTER to start the game. Use the arrow keys
to move and X to fire. Enjoy playing the game. Press
ESC twice when you’re done, to return to Lakka.

11 Set up a controller
Video game consoles rarely come with

keyboards. And no doubt you’ll want to attach a
controller to your console.

If using a wireless gamepad, insert its dongle
into one of Raspberry Pi’s USB ports, insert the
batteries, and turn it on. Press the Start button on
the gamepad and it will light up.

Use the arrow keys to choose Input and User
1 Binds. If it is connected correctly, you will see
‘RetroPad’ next to User 1 Device Type.

Scroll down and choose User 1 Bind All. Follow
the on-screen instructions to press the buttons
and move the analogue sticks on the gamepad. You
may have to go through it a few times to get the
process right.

You can also set each button individually using
the options. Once everything is set up correctly,
you’ll be able to use the gamepad to control your
Raspberry Pi console.

12 Move to the television
Your Raspberry Pi games console is now

ready to be moved to your television. You will be
able to control the games console using your USB
or wireless controller and move ROM files directly
to it from your Windows PC or Mac computer.
There’s a lot more to Lakka to discover, but for now
we hope you enjoy playing retro games on your
Raspberry Pi console.

	� While you can use a
keyboard, a proper controller
is best for playing games

	� Match the buttons
and sticks on a
gamepad to the
controls used in
each core

Top Tip
Ask for help

It’s worth heading
over the Lakka
forums for friendly
help and advice:
magpi.cc/
lakkaforum

Retro Gaming with Raspberry Pi 17magpi.cc

TUTORIAL

http://insert.full.ip
http://magpi.cc/lakkaforum
http://magpi.cc/lakkaforum
http://magpi.cc
http://magpi.cc

SUBSCRIBE TODAY
FROM ONLY £5

Low monthly cost (from £5)
Cancel at any time
Free delivery to your door
Available worldwide

Rolling Monthly Subscription

£55 (UK) 	 £90 (USA & Rest of World)

£80 (EU) 	
Free Raspberry Pi Zero W Kit with 12 Month upfront

subscription only (no Raspberry Pi Zero Kit with Rolling

Monthly Subscription)

Subscribe for 12 Months

Subscriber Benefits

FREE Delivery
Get it fast and for FREE

Exclusive Offers
Great gifts, offers, and discounts

Great Savings
Save up to 35% compared to stores

SUBSCRIPTION

 Email: magpi@subscriptionhelpline.co.uk

 Subscribe online: magpi.cc/subscribe
 Subscribe by phone: 01293 312193

Subscribe18

mailto:magpi@subscriptionhelpline.co.uk
http://magpi.cc/subscribe

Raspberry Pi Zero W

Raspberry Pi
Zero W case with
three covers

USB and HDMI
converter cables

Camera Module
connector
Offer subject to change or
withdrawal at any time

JOIN FOR 12 MONTHS AND GET A

SUBSCRIBE
on app stores

FREE Raspberry Pi
Zero W Starter Kit
WITH YOUR SUBSCRIPTION

Subscribe in print
for 12 months today
and you’ll receive:

Buy now: magpi.cc/subscribe

SUBSCRIPTION

19Retro Gaming with Raspberry Pi

https://itunes.apple.com/gb/app/the-magpi-the-official-raspberry-pi-magazine/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB
http://magpi.cc/subscribe

REVIEWS OF THE TOP
KIT FOR RETRO GAMERS

RETRO GAMING
HARDWARE

22 	� PICADE
Pimoroni’s mini-bartop
arcade cabinet

24 	� TINYPI PRO
The smallest retro game console
you ever saw

26 	� WIRELESS USB
GAME CONTROLLER
One of the best
controllers around

28 	� DELUXE ARCADE
CONTROLLER KIT
An all-in-one arcade joystick
and case

30 	� PIDP-11
Turn a Raspberry Pi into a
1970s computer

 �Retro gaming consoles need
a controller – arcade games
are little fun to play with a
keyboard and mouse

Retro gaming hardware20

21Retro Gaming with Raspberry Pi

N ew versions of products are usually billed
as ‘bigger and better’, but Pimoroni’s new
Picade is smaller than its original mini-

bartop arcade cabinet. The display is still 8 inches
(a 10-inch model is also available for £195 / $206),
however. This time it’s an IPS (in-plane switching)
panel with wide viewing angles, higher resolution
(1024×768 compared to the earlier 800×600), and
a new Pimoroni-designed driver board with HDMI
input and keypad controls for an on-screen menu.

Another key improvement is the new Picade X
HAT, which works with any 40-pin Raspberry
Pi. Also available separately (£15) for those who
want to build their own custom arcade cabinet,
the HAT has easy-to-use DuPont connectors
for the numerous joystick and button wires. An
additional ‘Hacker’ header breaks out the few
remaining unused GPIO pins and I2C, which
could be used to add extra buttons. The HAT
also features power management and a
built-in I2S DAC with 3W amplifier for mono
audio – this time there’s only one speaker
included, although it’s plenty loud enough.

The new Picade model is sleeker
with a host of improved features.
Phil King relives his misspent
youth down the arcades

 Pimoroni magpi.cc/iLOfHv £150 / $159

 �The new Picade is
easier to build and
looks fabulous sitting
on your coffee table

Picade

REVIEW

Picade22

http://magpi.cc/iLOfHv

Before you play on your new Picade, you’ll need
to assemble it. Taking two to three hours, this is an
easier process than before, although there are still
fiddly bits – mainly involving holding the tiny M3
nuts in hard-to-access places while screwing bolts

(tip: use Blu Tack). Full instructions are supplied
on the reverse of an A1 poster, but we found
the appended online ones, with videos, easier
to follow. Assembly is aided by some excellent
packaging, with separate colour-coded boxes for
the cabinet, screen, fixings, and accessories.

Arcade assembly
Firstly, a few of the black powder-coated MDF
panels need to be screwed together with plastic
brackets. Placed upside-down onto a clear acrylic
panel, the screen display is connected to its rear-
mounted driver board by a short flat flex ribbon
cable and care needs to be taken not to pull out
the connector tabs too far when inserting it.

Next, add the 30 mm push-fit arcade buttons
and a microswitched joystick with ball top. Since
these are standard parts, you could potentially
customise your Picade by using different (possibly
illuminated) buttons and joystick topper.

The wiring is easier than on the original Picade
due to the DuPont connectors on the HAT, so you
simply push in the pins of the wires, although the
other ends still have spade connectors (and there
are push-fit connectors for the speaker wires). As
long as you get each wire loom the right way round

at the HAT end, you should be able to make the
correct connections for the joystick and buttons.
In addition to the six control buttons, there are
four utility buttons placed around the cabinet and a
light-up yellow power button – simply press this to
turn the Picade on and off, automatically shutting
down Raspberry Pi safely – a really nice touch.

Playtime
Before turning on, you’ll need to download
RetroPie and write it to a microSD card – and
uncomment a line in the boot/config.txt file to
force HDMI output, to make the display work.
The card can then be inserted into the Pi mounted
inside the cabinet via a handy access hole.
Alternatively, the back panel can easily be removed
for easy access to all the components.

A 5 V USB-C power supply (not included) powers
the Picade X HAT, which in turn powers Raspberry
Pi, and the display via a USB cable. Hit the power
button and away you go. Well, not quite. You’ll
first need to connect a keyboard to Raspberry Pi
and install the Picade X HAT driver with a one-line
Terminal command.

Then it’s just a matter of setting up the joystick
directions and buttons in the EmulationStation
menu and – after adding files to RetroPie – playing
your favourite homebrew games!

10

Verdict
A fun, if at times
fiddly build,
this all-new
Picade features
high-quality
components and
feels sturdy. Major
improvements
over the original
version include a
vivid, higher-res
IPS display and
easier-to-connect
Picade X HAT.

/

SCREEN:
8-inch
IPS panel,
1024×768 pixels

BOARD:
Picade X HAT

CONTROLS:
Joystick, 6 ×
arcade buttons

SPEAKER:
3-inch, 5 W, 4 Ω

DIMENSIONS:
350 × 230 ×
210 mm

SPECS

 �The Picade X HAT has
easier-to-use connections,
including a ‘Hacker‘ header

 �Just like the one at
your local arcade, only
much smaller!

 �Before you can play on
your new Picade, you’ll
need to assemble it

9

REVIEW

23Retro Gaming with Raspberry Pi

O riginally known as the Pi0cket-tiny, the
TinyPi started out in 2017 as a fun project
by maker and retro games enthusiast Pete

Barker. Due to the level of interest, he launched
a kit so you can make your own extremely small
game system.

And we do mean small: the TinyPi Pro (the new,
upgraded version) is about the same size as a
Raspberry Pi Zero, albeit just shy of 20 mm deep.
It’s a pretty remarkable kit in that sense: fitting a
D-pad, six face buttons, and two shoulder buttons,
while also including a screen and speaker in the
chassis is both impressive and a tight squeeze.

As mentioned above, it does come as a kit, and
you need to supply your own Raspberry Pi Zero for
it (GPIO pins not required), as well as a microSD
card to install an operating system to.

For a project kit this small, you’d usually be
required to do a little soldering yourself to ensure
everything fits as intended. Not so with the TinyPi
Pro – in fact, the only fastening you need to do is
with eight screws connecting to four spacers, and
an Allen key to tighten them is supplied in the kit.

Tiny build
With something this small, you also might imagine
it to be quite fiddly – and the tweezers included
with the kit will hardly allay those fears. However,
the only really fiddly part was attaching the (quite
small) battery. The tweezers worked perfectly for
that, while everything else just dropped, slotted,
or clipped into place.

The packaged instructions make the build look
simple, and it mostly is: unfortunately, a couple

The smallest retro game console you ever saw, and you can
make it yourself. Rob Zwetsloot puts one together

 Pi0cket pi0cket.com £90 / $115

 	� The kit is nicely laid out, with
everything in plain view

TinyPi Pro

DISPLAY:
240×240 pixels,
1.3-inch

BATTERY:
Rechargeable
400 mAh

DIMENSIONS:
69 × 34 × 20 mm

PORTS:
HDMI out,
USB in

STORAGE:
Swappable
microSD card

SPECS

REVIEW

TinyPi Pro24

http://pi0cket.com

of bits are neglected in the explanation, although
we’re assured that there will be very fleshed out
online resources by the time its released, as well
as some tweaks to the included instructions.

Tiny power
Thanks to a combination of RetroPie and the
power of a Raspberry Pi Zero, the TinyPi Pro has
the means (and oomph) to play a wide range of
homebrew games. The RetroPie setup is easy,
but you need to know how to skip the controller
configuration once all the available buttons are
used (tip: hold down any button).

While there are more than enough buttons for
the majority of games you’ll be able to play on the
TinyPi Pro, actually using them all with clumsy
adult mitts for some games is quite difficult.
Fingers and thumbs get in the way of each other,
and you’ll soon get a cramped hand from holding it
in a way needed to reach the shoulder buttons. We
found games that didn’t need that many buttons
worked a lot better, but kids with smaller hands
might be fine with the full set.

The small screen is fine, though, and you’ll be
hard-pressed to find a game where you’ll struggle
to make out everything that actually runs on your
Raspberry Pi Zero.

It’s a lovely kit with a fun, quick build. The final
result is impressive, but it’s not the very best thing
to play games on. Still, it fits neatly in a pocket if
you really need a retro hit out and about.

 	� Compared to its
contemporaries,
it’s an incredibly
small device

 	� While the size is
very convenient, it
does mean it’s a little
awkward to play

10

Verdict
A really neat kit
that has a fun
build and an
amazing final
product. It’s a
little too small
for giant adult
fingers, but may
be better suited to
younger players.

/8

 ��We found games that didn’t need that
many buttons worked a lot better

 	� Much smaller than a banana,
it’s not quite so easy to hold

REVIEW

25Retro Gaming with Raspberry Pi

R aspberry Pi 4 (or 3) is an excellent base
for retro gaming projects. With its speedy
processor and wireless networking, you can

set up a console in your front room and bounce
game ROMs to it from another computer.

Retro gaming consoles need a controller –
arcade games are little fun to play with a keyboard
and mouse. And if you’re building a retro games
console, this Wireless USB Game Controller is a
great companion device.

The style will be familiar to gamers. It features a
D-pad, four buttons, two analogue control sticks,
and four trigger buttons. In the middle are Select,
Start, Analog, and a mysterious Turbo button.

All of this is powered by three AAA batteries,
which we find easier than charging up via a USB
cable. On the rear of the device is an on/off switch
that is used to connect and disconnect from your
Raspberry Pi.

The feature we like most is the 2.4GHz wireless
USB receiver dongle. Instead of going through
the awkward Bluetooth pairing process, you
simply plug in the USB dongle and it connects
straight away.

We tested it with RetroPie (retropie.org.uk)
and are pleased to report that it worked first
time without any issues. As soon as we booted
into RetroPie, the Wireless USB Game Controller
appeared as a device, enabling us to assign
buttons to controls.

Alternatively, if you want to use Lakka, check out
the installation guide on page 14, or view a video
here: magpi.cc/2doUHrd.

During a game test, we found the Wireless USB
Game Controller comfortable to hold and perfectly
fine to use. It’s not quite up there with the original
DualShock, but it’s not far off, and better than
most third-party controllers.

This versatile controller is easy to set up and great to use

 The Pi Hut magpi.cc/2xpzdph £14 / $18

Wireless USB
Game Controller

10

Verdict
One of the best
games controllers
we’ve found.
Works right out
of the box and is
a comfortable,
professional,
and slick piece
of kit. A perfect
companion for
retro gaming.

/10

REVIEW

Wireless USB Game Controller26

http://magpi.cc/2doUHrd
http://magpi.cc/2xpzdph

Join us as we lift the lid
on video games

Visit wfmag.cc to learn more

http://wfmag.cc

O n page 146 of this book, we take you through
a comprehensive arcade machine build,
including a complete wooden build of the

cabinet itself. While it’s certainly impressive, not
everyone has the space, time, or money for one.
This is where awesome little kits like this one from
Monster Joysticks come in.

You’ve probably seen this type of kit before – it’s
an all-in-one arcade joystick and case for your
Raspberry Pi that turns it into a small and portable
arcade machine. Just hook it up to the nearest
television and you’re ready for some serious retro
gaming action.

Unlike the stocking filler plug-and-play
consoles, this kit requires you to build your
gaming system and supply a Raspberry Pi board
to power it. Construction is very simple, though:
there are six acrylic panels for each side of the
box and only eight screws required to fasten them
all together.

Quality components
The kit comes with nine genuine Sanwa arcade
buttons and a Sanwa joystick, which just simply
click into the acrylic panels as you build them.

To wire up the buttons and joystick, a little add-
on board is provided with colour-coded wires.
They can be a little tricky to properly attach to the
connections as the connectors themselves are a bit
tight, but you don’t have to worry too much about
wires getting tangled up. You may also need to
push down the top panel a bit due to resistance of
all the wires, but otherwise it all fits fairly neatly
inside. You can find the full build instructions on
the Monster Joysticks website: magpi.cc/2i3iQp8.

The build took us just shy of three episodes of
The Simpsons, so make sure you set aside about an
hour for the job. Our only real complaint about the
build is that, while all the ports and even microSD
card slot are readily accessible, your Raspberry Pi
can only be removed by taking the case apart. It

Rob Zwetsloot builds a mini arcade machine with this
all-in-one controller kit from Monster Joysticks

 Monster Joysticks monsterjoysticks.com £100 / $127

Deluxe Arcade
Controller Kit

REVIEW

Deluxe Arcade Controller Kit28

http://magpi.cc/2i3iQp8
http://monsterjoysticks.com

will only take a couple of minutes to remove it, but
we’d have preferred it to be a little easier.

The final part of the build involves attaching
little rubber feet to the bottom – very welcome, as
the case had been slipping a bit on the glass table it
had been built on.

The stick feels solid and has a decent weight to
it thanks to the included components, so you feel
pretty safe giving the buttons and joystick a proper
workout. The included Sanwa components are
quite important as not only are they high-quality
and can survive a bit of classic button mashing/
frame-perfect combo-timing, they’re also quite
customisable. For instance, if you don’t fancy the
button colour scheme, you can always swap them
out. The joystick itself can also be customised:
the version that comes with the kit has square
four-way gates, but they can be upgraded to an
octagonal eight-way gate, or any other gate style if
you prefer.

Quick configuration
Software customisation for RetroPie is also very
simple. With a custom add-on board to connect

the controls to Raspberry Pi over GPIO, we
initially feared we’d have to download custom
scripts for the job. Not so, though, and while you
do need to go into the RetroPie configuration
menu and install an extra driver, it’s all quick
and included in the RetroPie archive. Once that’s
done, you can configure the stick controls, as
well as any extra controllers you’ve plugged into
the USB ports.

This kit is a great, solid package and it looks
good as well. We recommend investing in some
nice, long HDMI and USB cables to power the
box and don’t be afraid to put some sticks or a
little custom decal onto the case as well. With
Christmas coming up, it may just be the perfect
gift for someone. 10

Verdict
A great little kit.
It’s a fun build
but also a good
quality product to
use. We’d prefer
our Raspberry Pi
to be a bit more
accessible, but
otherwise the high
customisability is a
big plus.

/8

 ��The stick feels solid and
has a decent weight
to it thanks to the
included components

REVIEW

29Retro Gaming with Raspberry Pi

PiDP-1130

REVIEW

T he launch of Digital’s PDP-8 minicomputer
in the 1960s was a defining moment
in computing history, laying down the

foundations of the hardware and software
architectures we use today. Both it and the later
PDP-11 were not only powerful machines, but also
beautifully designed objects.

Oscar Vermeulen, an admirer of PDP range, has
sold over 2000 of his PiDP-8 replica: a Raspberry
Pi-powered emulator with a fully functional one-
third scale front-panel. Now comes his PiDP-11 kit.
Released in 1970, the original PDP-11 is the most
successful ‘mini’ computer in history, with over
600,000 sold.

Remarkable replica
For this new kit, a painstaking process has resulted
in an injection-moulded replica of the original
PDP-11’s case. If not for the one-third scale, you
would struggle to tell it apart from the real thing.
A perfect facia and custom-built switchgear
complete the package. You even get a key and lock,
just like the real thing.

Once built, the PiDP-11 PCB comprises 64 LEDs,
two rotary encoders, and an array of switches
that connect to Raspberry Pi’s GPIO. Running a
special version of the SimH emulator, Raspberry
Pi accurately handles input and output from the
panel. You can hook up a screen, use SSH, or go
old-school and implement RS-232. The back panel
has different cut-outs to suit your cabling.

Digital-it-yourself
The PiDP-11 is supplied in kit form and there’s a
lot to do. You’ll need to have some experience in
soldering to put this together, the focus being on
accurately fitting the switches and LEDs. This is
tricky, but Oscar has provided jigs that make the

Turn a Raspberry Pi into a blinktastic classic 1970s computer?
PJ Evans puts on his Paisley shirt and heats his soldering iron

 Obsolescence Guaranteed magpi.cc/wgWNTC From $250

PiDP-11

DIMENSIONS:
17×31×6 cm

MODEL:
PDP-11/70

ARCHITECTURE:
16-bit

OS:
RSX-11M Plus

BLINKENLIGHTS:
64

SPECS

 	� The completed PiDP-11 on
the provided wooden stand

 	 A back panel is
provided with cut-outs
for popular connectors,
or you can leave it open

http://magpi.cc/wgWNTC

31Retro Gaming with Raspberry Pi

REVIEW

alignment of all these components much easier
than with the PiDP-8. The instructions are in
an alpha stage, but they are clear and the switch
section is especially detailed. It took us about five
hours to complete.

Full instructions are provided on how to prepare
Raspberry Pi for its new career in 1970s computing.
At the time of publication, a one-stop SD card
image should be available. Otherwise, there are a 10

Verdict
The PiDP-11 ticks
all the boxes. It’s
straightforward to
build, beautifully
cased, and
is endlessly
customisable.
Whether you’re
interested in early
computing or
hypnotic flashing
lights, you’ll
be delighted.

/

 �An essential purchase for
anyone with an interest
in computing history

9

few hoops to jump through, but nothing too arcane
and the steps are well explained.

Once you log in, you’re straight into the PDP‑11’s
OS, an early form of UNIX. A number of alternative
OSes are available, with more promised soon. You
can switch back to Raspbian any time you like. In
fact, as SimH doesn’t put a lot of strain on your
Raspberry Pi, it’s unlikely to struggle with other
server tasks. As a result, many users have their
PiDPs doubling up as file or media servers.

These kits are a labour of love for Oscar and the
attention to detail shines through, from the quality
of the casing to the extensive labelling on the PCB.
You many find the price high, but the quality is
there to match. An essential purchase for anyone
with an interest in computing history.

EMULATE CLASSIC COMPUTERS
WITH RASPBERRY PI

34 	� USING A RETRO COMPUTER
Have fun with an emulated
classic computer

36 	� AMAZING EMULATORS
How to use them and what to
do with them

38 	� PUT RASPBERRY PI INSIDE
A CLASSIC COMPUTER
Resurrect a ZX Spectrum case
and keyboard

42 	� �TURN RASPBERRY PI INTO
AN AMIGA
Recapture the glory days of
16-bit computing

44 	� COMMODORE MONITOR
A tiny replica monitor created
for Commodore 64 gaming

RETRO
COMPUTING

 �Back in the day, you could learn
a lot by typing in the code given
away with computer magazines

Retro computing32

33Retro Gaming with Raspberry Pi

FEATURE

Using a retro computer34

USING A
RETRO
COMPUTER
DISCOVER ALL THE FUN YOU CAN HAVE
WITH AN EMULATED CLASSIC COMPUTER

W hile playing games and
writing software are the
most obvious uses for

your virtual vintage computer,
using old-school software
provides a unique look and feel
to more artistic projects, too.

Back when IBM PCs had nothing
more than a buzzing monophonic
beeper to communicate with
the world, the Atari ST and
Commodore Amiga were creating
fantastic polyphonic synth tunes.

The Atari ST’s integrated
MIDI ports made it very popular
as a musician’s composition,
production, and performance tool
using software such as Cubase.

At the same time on the Amiga,
MOD files, first created as a
native format for the Ultimate
SoundTracker audio composition
tool, quickly became ubiquitous,
and their influence is clearly
audible in modern chiptune music.
Freeware ProTracker 3.15 is still a
popular composition tool.

The Amiga was also the
graphical champion of the 16-bit
home computer world. Electronic

Arts’ Deluxe Paint was the art
program of choice for game
developers and digital artists
alike. A powerful bitmap graphics
tool, it was eventually ported
to MS-DOS, once PC graphics
technology caught up, and
produced the original pixel art for
classic games like The Secret of
Monkey Island.

RENDER 3D GRAPHICS
If you fancy turning your hand to
ray-traced graphics, POV-Ray –
the Persistence of Vision Raytracer
– is free and provides old versions
for download, all the way back to
its 1992 DOS release. You’ll have
to get to grips with its text-based
language for defining the 3D
objects you wish to render and your
render times on a Raspberry Pi will
probably take about as long as they
would have on a 386 back in the day.

One of our favourites is 3D
Construction Kit II (also known as
3D Virtual Studio) for the Atari,
Amiga, MS-DOS, and even some
8-bit systems. Based on the
Freescape game engine, it lets you

Above The Usborne Guide to Better BASIC,
one of the firm’s classic computer books is
available as a free download

Image Credit: Usborne Publishing

FEATURE

35Retro Gaming with Raspberry Pi

create and share interactive 3D
worlds and games, and feels much
like Minecraft’s distant ancestor.

HOME OFFICE
You can, of course, run old word
processors and office software –
WordPerfect 5.1 for DOS provides
a surprisingly meditative writing
environment. While professional
layout and design software from
the 1980s and 1990s may be best

forgotten, we can wholeheartedly
recommend playing with kid-
friendly design programs like
Springboard’s The Newsroom Pro
and Broderbund’s The Print Shop.
You can even get DOSBox talking
to a printer if you want to share
your creations with the world.

The obvious thing to do with an
emulated version of a classic is
to teach yourself to program the
same way thousands of people –
including influential developers
like Jeff Minter, Peter Molyneux,
Anita Sinclair, and Muriel Tramis
– got started in the 1980s.

As well as the remarkably
informative manuals that
came with the computers, a
lot of the materials that got
developers started back in the

day are available for free online.
Usborne still publishes guides to
modern programming languages,
and has generously made its
fantastically illustrated 1980s
introductions to computers
and programming available for
free (scroll down to the bottom
of magpi.cc/2EsGwR6).

Back in the day, you could learn
a lot by typing in the code given
away with computer magazines.
Plenty of those have been
archived online for posterity,
including full copies of CVG
(magpi.cc/2EokUoH), highlights
from a range of Sinclair Spectrum
magazines (magpi.cc/2ErDnAP),
and Acorn-focused Your
Computer (magpi.cc/2Em9Ybp).

For later computers, you
can find whole development
environments, like STOS The Game
Creator for the Atari ST and SEUCK
(Shoot ’Em Up Construction Kit)
for Commodore systems. As well as
free homebrew titles, some games
made for older and emulated
systems even went on to see
commercial releases.

TOP FIVE
HOMEBREW

A surprising amount of software is still written for

old-school computers and emulators, with vibrant

homebrew scenes catering to the Spectrum, C64,

MSX, and CPC.

SILLY KNIGHT (MS-DOS)
Award-winning, castle-conquering platformer with

CGA graphics.

> magpi.cc/2EbfFJS

OOZE (ZX SPECTRUM 128K)
Navigate maze-like levels as a blob of gravity-

defying goo.

> magpi.cc/2CgJQti

TIME OF SILENCE (C64)
This isometric adventure-RPG is a short but lovely

exploration of a post-apocalyptic world.

> magpi.cc/2Emarub

 (ZEVIMODOKI) (MSX)
Cross hostile terrain and shoot down enemy ships

in the vertically scrolling shoot-’em-up.

> magpi.cc/2E9cVwC

HORACE AND THE ROBOTS
(ZX SPECTRUM)
Escape destructive robots in this strategic arcade

blaster with synthesized voice effects

> magpi.cc/2E7BSZg

Above You can use software like 3D
Construction Kit II to create 3D worlds and
games, and even share them with others

HANDY
SOFTWARE

PROTRACKER 3.15

> magpi.cc/2EsBtji

MOD FILES

> modarchive.org

3D CONSTRUCTION KIT

> 3dconstructionkit.co.uk

POV-RAY

> magpi.cc/2EnyFUN

THE NEWSROOM

> magpi.cc/2EnnpYC

THE PRINT SHOP

> magpi.cc/2EmjxHj

 The Amiga was also the graphical
champion of the 16-bit home
computer world

http://magpi.cc/2EsGwR6
http://magpi.cc/2EokUoH
http://magpi.cc/2ErDnAP
http://magpi.cc/2Em9Ybp
http://magpi.cc/2EbfFJS
http://magpi.cc/2CgJQti
http://magpi.cc/2Emarub
http://magpi.cc/2E9cVwC
http://magpi.cc/2E7BSZg
http://magpi.cc/2EsBtji
http://modarchive.org
http://3dconstructionkit.co.uk
http://magpi.cc/2EnyFUN
http://magpi.cc/2EnnpYC
http://magpi.cc/2EmjxHj

FEATURE

Amazing emulators36

AMAZING
EMULATORS
EMULATORS ARE AVAILABLE FOR
EVERY RETRO COMPUTER YOU
CAN THINK OF, BUT NOT ALL OF
THEM PLAY NICELY WITH THE
RASPBERRY PI. HERE ARE OUR
FAVOURITES, WITH A BIT OF EXTRA
INFO ON HOW TO USE THEM AND
WHAT TO DO WITH THEM

SPECTRUM: FUSE

> magpi.cc/2ErcA7S

The Free Unix Spectrum Emulator
(FUSE) is one of the longest-
running and best-supported
emulator projects around. It’s in
the Raspbian and Ubuntu MATE
repositories, so you can install
it with sudo apt install
fuse‑emulator-sdl.

Before you get cracking, you’ll
want some Spectrum operating
system ROM files (sudo apt
install spectrum-roms) and
utilities (sudo apt install
fuse-emulator-utils). Press
F1 to access the menu (and its
full screen in the options menu,
needed if you run it from a GUI).

FUSE opens with a perfect
emulation of the ZX Spectrum
BASIC, so you can start
programming straight away.

APPLE II: LINAPPLE-PIE

> magpi.cc/2ErIWiC

The Apple II was always more
popular in the USA than in the
UK, but as an early step on the
hardware development path
that led to Apple becoming the
household name it is today, it
resulted in the creation of some
of most influential software ever
made, particularly games.

LinApple-Pie provides an
authentic recreation of the
Apple II and its implementation
of BASIC, and is available for
RetroPie and via GitHub to
download and compile under any
Linux-based Raspberry Pi OS.

ATARI ST: HATARI

> hatari.tuxfamily.org

The Atari ST spent much of the
1980s and 1990s as the arch-rival

of the Commodore Amiga for
home computing, the two 16‑bit
computers having superseded
the primitive-by-comparison
8-bit machines. In addition, the
ST’s integrated MIDI ports and
generous memory (anywhere
between 512kB and 4MB) saw it
appearing in music production
studios across the UK.

The Hatari emulator supports
USB MIDI adapters, which means
you can connect MIDI input
devices like keyboards and output
hardware like Roland’s SC-55
with software such as Cubase
and Notator.

You can install Hatari from
Raspbian’s standard repositories
(sudo apt install hatari), but
you’ll need ROM images of Atari’s
TOS (The Operating System),
which you can learn about at
magpi.cc/2Em8Fcv and download
from magpi.cc/2EstrqE.

BEEBEM

> magpi.cc/2EoKAS3

The BBC Micro isn’t as well
supplied with emulators as some
of its more international rivals,
but although BeebEm hasn’t been
updated in over a decade, it’s solid

http://magpi.cc/2ErcA7S
http://magpi.cc/2ErIWiC
http://hatari.tuxfamily.org
http://magpi.cc/2Em8Fcv
http://magpi.cc/2EstrqE
http://magpi.cc/2EoKAS3

FEATURE

37Retro Gaming with Raspberry Pi

and stable. However, compiling it
involves a couple of extra steps.

Download beebem-0.0.13.tar.gz
and the 64-bit, keys, and
menu_crash patches. Now:

sudo apt-get install
libgtk2.0-dev libsdl1.2-dev
tar -zxvf beebem-0.0.13.tar.gz

Before you cd into the directory…

patch -p0 < beebem-
0.0.13_64bit.patch
patch -p0 < beebem-0.0.13-
keys.patch
patch -p0 < beebem-0.0.13_
menu_crash.patch

cd beebem-0.0.13
./configure
sudo make install

The emulator comes fully loaded
with operating system ROMs,
and you can access its settings by
pressing F12.

C64: VICE

> magpi.cc/2Erd120

VICE, the Versatile Commodore
Emulator, is a fantastically
authentic emulator that not only
provides a spot-on reproduction
of the C64 user experience, but
also the rest of Commodore’s
8-bit computer range, including
the VIC-20 and Plus4.

To install it under Raspbian,
enter: sudo apt install vice.

Once running, you can access
its menus by pressing F12. A huge

range of clearly labelled settings
let you do everything from
saving programs to connecting
your emulated computer
to the internet.

IBM-PC: DOSBOX

> dosbox.com

Emulating DOS software on a
Raspberry Pi can be a challenge,
simply because of the huge
range in required specifications
between MS-DOS’s first release in
1981 to its final iteration in 2000.

DOSBox is available in the
Raspbian repositories, so
you can sudo apt install
dosbox and consult the
excellent documentation
(magpi.cc/2EmbSJ3) to get
your vintage software mounted
and installed.

DOS has the widest imaginable
range of software, from DTP
programs and office suites to
fractal generators and games.
However, depending on your
Raspberry Pi model, you may
be best off sticking to software
released before the mid-1990s.

MSX: OPENMSX

> openmsx.org

The MSX, with its built-in
Microsoft eXtended BASIC,

had near-arcade quality
games and some of the first
implementations of the MIDI
electronic music standard.

While there are a number
of good MSX emulators out
there, OpenMSX is regularly
updated, extremely faithful,
and can be found in the standard
Raspbian repository, so you
can install it with sudo apt
install openmsx.

It even supports MIDI via
USB adapters and soft synths,
so you can use the extensive
range of MSX music utilities
archived online.

OpenMSX comes with an open-
source operating system ROM,
but this doesn’t include MSX
BASIC, so you’ll have to hunt
down original ROM images for
your MSX before you can write
your own software.

AMIGA: AMIBERRY

> magpi.cc/2ErK2ee

During the late 1980s, the
Amiga was known for its huge
range of games and audiovisual
demos that pushed the limits
of what Commodore’s systems
could achieve.

AmigaOS is still in development,
with version 4.1 available to
buy for around £30, while older
versions of the sort you’ll want
for emulation are sold by Cloantro
(amigaforever.com).

Amiberry is optimised to get
the best performance out of
Raspberry Pi and is available via
RetroPie, as a bootable image,
and as source code.
If you compile it
yourself, follow the
First Installation
instructions
to get all the
dependencies it
needs in place.

http://magpi.cc/2Erd120
http://dosbox.com
http://magpi.cc/2EmbSJ3
http://openmsx.org
http://magpi.cc/2ErK2ee
http://amigaforever.com

FEATURE

Using a retro computer38

L uckily, many ZXt Spectrums
have made it to 2018 in
working order, but the

ones that weren’t so fortunate
can find new lives as a keyboard
and case for the Raspberry Pi.

A Raspberry Pi Zero W fits
most easily into a Spectrum

PUT RASPBERRY PI

INSIDE A
CLASSIC
COMPUTER
TURN A DEFUNCT ZX SPECTRUM CASE AND MEMBRANE KEYBOARD
INTO A NEW HOME AND INPUT DEVICE FOR YOUR RASPBERRY PI

case. There’s space for larger
models in the raised upper area
of the case, but the wiring gets
more complicated.

Always measure carefully, clean
everything, double-check all
positioning, and make sure you
have enough cable to connect each

component once everything’s
in place.

KEYS TO THE CASTLE
The Spectrum keyboard uses a
thin plastic membrane sandwich
with two layers of electrical
tracks which form a matrix
grid of 5×8 tracks. When a key
is pressed, it creates a circuit
between two of these tracks.
Each key ‘lights up’ a unique pair
of tracks.

The tracks lead into two ribbon
cables that go from the keyboard
assembly to the motherboard.
The ribbon connectors consist
of five data lines (KB1) and eight
address lines (KB2). One wire on
each will light up per key press.

The ribbons are extremely
delicate and normally the
first thing to fail on a Speccy,
making keys on the broken
line unresponsive. Newly
manufactured replacements are
available if needed.

The ribbon cables go to two
connectors, which we’ll need to
connect them to your Raspberry

>� �A ZX Spectrum

case with

keyboard

membrane

>� �Soldering iron

and solder

>� �Ribbon cable

or wire

>� �Sticky pads

and electrical

tape to mount

hardware

>� �2 × Pieces of

stripboard

large enough to

accommodate

components

and keyboard

connectors

>� �8 × Diodes

(e.g. 1N4148)

>� �2 × Molex

keyboard

membrane

connectors (1×

5-pin, 1× 8-pin)

>� �Push-to-make

momentary

contact button

>� �ZX Raspberry

Keyboard

Scanner

magpi.cc/

2EbikTS

YOU’LL
NEED

http://magpi.cc/2EbikTS
http://magpi.cc/2EbikTS

FEATURE

39Retro Gaming with Raspberry Pi

Pi’s GPIO. You can harvest
these from a dead Spectrum
motherboard or buy online.

Cut two pieces of stripboard,
one for each connector. Carefully
work out where to place these
in the case, as the ribbons from
the membrane must not be
put under any stress. Ideally,
model their positioning on the
Spectrum’s original motherboard,
using masking tape to mark
their position.

Spectrum keyboard connectors
are very delicate. If required on an
old one, manipulate the contacts
carefully so they make a good
connection with the ribbon.

Most importantly, make sure
you solder them into position
the correct way around! Only one
side of the ribbon has its contacts
exposed and these need to match
up with the flat side of each
connector. KB1 connects at the
bottom, KB2 at the top.

To support multiple key presses,
we need to ensure that the current

BY PJ EVANS
When not volunteering at The

National Museum of Computing

or running the Milton Keynes

Raspberry Jam, PJ can be found

installing Raspberry Pi devices

where no-one asked them to be.

mrpjevans.com

from the address lines doesn’t
short-circuit, so a diode is used to
protect each line. When soldering
the stripboards, make sure you cut
the tracks between the resistors
and the diode.

FUNCTION KEYS
You’ll also notice another
component: a button. The
Spectrum keyboard lacks function
keys, but you’re going to need
them to control a Raspberry Pi.

The Keyboard Scanner utility
includes an alternative keyboard
mapping mode. When it detects
a press of our switch, it toggles
between ‘normal’ mode and a
second mode that converts the
number keys into their function
key equivalent.

TIME SCANNERS
To get your Raspberry Pi working
with the membrane keyboard
input, we use a Python script to
scan the keyboard for presses and
inject them into the kernel. The

script outputs a current through
all address lines (KB2) and drops
the current to each one in turn
about 60 times a second.

If a key is pressed, we can
detect which data line it’s on,
and we know which address line
was being checked, so we know
which key was pressed. The result
is passed to a piece of software

A Raspberry Pi Zero is perfect for
the shallow casing of a classic ZX
Spectrum. It also allows easy access
to HDMI and power through the case

The ZX Spectrum lacks function
keys, so we use this switch to
tell Raspberry Pi to remap the
number keys to F1, F2, and so on

We can connect the keyboard
directly to the GPIO header. You
can use any available I/O pins,
but see ‘Ribbon solder guide’ box
(p43) for our suggested layout

These connect the keyboard
membrane to your Raspberry Pi. The
stripboard provides stability and the
diodes prevent short circuits

http://mrpjevans.com

FEATURE

Using a retro computer40

called uinput, which turns it
into a key press.

The ZX Raspberry Keyboard
Scanner script is designed to
work with RetroPie and the FUSE
Spectrum emulator, but you’ll
find instructions for other distros
on its home page.

We can use Git to pull down
the script and its dependencies.
First, let’s make sure we have the
essentials to install everything:

sudo apt install get
libudev-dev python-dev
python-pip
sudo pip install wiringpi

Now install Libsuinput:

cd
git clone github.com/
tuomasjjrasanen/libsuinput
cd libsuinput
./autogen

./configure
make
sudo make install

Make sure uinput is loaded
every time the Raspberry Pi boots.
Add the following line to /etc/
modules-load.d/modules.conf:

uinput

You can load it right away
without rebooting by typing:

sudo modprobe uinput

And install Python-uinput:

cd
git clone github.com/
tuomasjjrasanen/python-
uinput
cd python-uinput
sudo python setup.py build
sudo python setup.py install

Download the scanner script:

cd
git clone github.com/
mrpjevans/zxscanner

And test it. Carefully connect
your ZX Spectrum membrane to
the Molex connectors and run
the following from the project
directory (ideally from an SSH
session on another computer):

cd ~/zxscanner
sudo python zxscanner.py

Now try the keyboard. Each
key press should produce a letter
on screen. The SSH session will
show debug output. Check the
switch too.

The script needs to run at
boot. Start by making the
file executable:

Looking quite bare
compared to the
original, but with
buckets more
power and storage

CODE
LANGUAGE:

Unix

CODE FILE

NAME:

startzxscanner.

service

GITHUB LINK:

magpi.cc/

2EbikTS

http://magpi.cc/2EbikTS
http://magpi.cc/2EbikTS

FEATURE

sudo chmod +x ~/zxscanner/
zxscanner.py

Then create a service file and
enter code from startzxscanner.
service. Our zxscanner.service
file needs to contain the following
so the OS knows how to start
the scanner:

sudo nano /usr/lib/systemd/
zxscanner.service

Finally, we enable the service so
the scanner is always running:

sudo systemctl enable
/usr/lib/systemd/zxscanner.
service

sudo systemctl start
zxscanner.service
sudo systemctl daemon-reload

When used with RetroPie and
FUSE, a tap on the button will
cleanly close FUSE, although you’ll
have to configure the emulator
not to prompt for confirmation.
A 3-second press will switch the
keyboard so keys 1-4 become F
keys (so you can get to FUSE’s
menu) and 5-8 act as cursor keys.

A world of ZX Spectrum
gaming and programming now
awaits you. You can, of course,
use your new ZX Raspberry to
emulate other computers…
even a Commodore 64.

Solder a ribbon cable from each connector to the

GPIO as follows:

BROADCOM GPIO NUMBER 	| CONNECTOR | LINE

26 	 KB1	 1

19 	 KB1 	 2

13 	 KB1 	 3

6 	 KB1 	 4

5	 KB1	 5

25	 KB2	 1

24	 KB2 	 2

23	 KB2	 3

22	 KB2	 4

27	 KB2	 5

18	 KB2	 6

17	 KB2	 7

4	 KB2	 8

21	 Switch

GND	 Switch

1 2 3 4 5

1 2 3 4 5
1

2

3

4

5

6

7

8

Q W E R T

A B D F G

0 9 8 7 6

P O I U Y

CAPS SHIFT 2 X C V

ENTER L K J H

SPACE
SYMBOL
SHIFT M N B

KB1
KB2

Left The Speccy’s
keyboard matrix allows
you to detect inputs for
40 keys using just 13 lines.
Perfect for the GPIO

RIBBON SOLDER GUIDE

TUTORIAL

Turn Raspberry Pi into an Amiga42

Recapture the glory days of 16-bit computing by turning
your Raspberry Pi into a faithful Amiga emulator

T he Commodore Amiga’s top-notch sound
and graphics made it one of the most
desirable home computers of the 1980s and

early 1990s, at a time when your average IBM
PC was still plodding along with EGA graphics
and an internal beeper. Amiga games from the
era have aged incredibly well, and look and play
brilliantly on everything from a portable display
to a widescreen TV. We’ll take you through
turning your Raspberry Pi into a perfect modern-
day Amiga emulator. You’ll need a Windows,
macOS, or Linux desktop operating system to copy
the Amibian Linux distribution to your SD card
and unpack the Kickstart ROMs required to make
it work smoothly.

Start by downloading the Amibian distro.
Format a microSD card, decompress the Amibian
RAR file, and use Win32DiskImager or Linux’s dd
command to copy the IMG file to the card. A 4GB
card should be plenty, as Amibian only occupies
around 300MB. Slot the microSD card into your
Raspberry Pi and power up. It’ll boot directly into
the UAE4ARM emulator, but there’s some extra
configuration to do before we start playing. Quit
UAE4ARM to get to the command line and run:

raspi-config

Select Expand Filesystem, which will give you
access to the entirety of the SD card’s capacity for
storage, then Exit and select Yes to reboot.

If your Raspberry Pi won’t output sound via
HDMI properly, enter this at the command line:

nano /boot/config.txt

Make sure the following lines are present and
aren’t commented out with a preceding hash (#):

hdmi_drive=1
hdmi_force_hotplug=1
hdmi_force_edid_audio=1

Save and return to raspi-config:

raspi-config

Select Advanced Options > Audio > Force HDMI
and then reboot.

Kickstart me up
To run Amiga programs, you’ll need a Kickstart
ROM – firmware from the original computers.
UAE4ARM comes with the open-source AROS ROM,
which can run only some Amiga programs, so we

Turn Raspberry Pi
into an Amiga

You’ll Need

> � �microSD card

> � USB stick

> � Wired Xbox 	
 360 controller

> � �Amiga Kickstart
ROMs
amigaforever.com

> � �Amibian
bit.ly/Amibian

You can load and
create emulated
hardware
configurations for
specific Amiga
computers

Game controllers,
mouse, and
keyboard
configurations can
be selected and
tweaked in Input

Once you’ve set
up your emulated
hardware and
firmware config, just
mount a floppy disk
image and click Start

http://amigaforever.com
http://bit.ly/Amibian

TUTORIAL

43Retro Gaming with Raspberry Pi

recommend using genuine Amiga Kickstarts for
reliability. The Kickstart ROMs and Workbench
GUI are still being maintained, thanks to Italian
firm Cloanto. Amiga Forever Plus Edition, priced at
€29.95, gets you a complete, legal set of Kickstarts
for every Amiga computer and console. As there’s
no Raspberry Pi edition, yet, you’ll currently have
to install Amiga Forever on a Windows PC or Wine
and copy the files onto a USB stick.

There are other ways of obtaining Kickstart
ROMs, but most are legal grey areas. You can
extract them from an Amiga using a tool such as
TransRom or find them on abandonware sites,
but we strongly recommend supporting Cloanto’s
continued development of Amiga Forever.

Classic Amiga software is even easier to find.
You’ll get 50 games with Amiga Forever Plus,
while some major publishers have made the
Amiga versions of their games available for free.

One true path
As Amibian doesn’t include a window manager,
it’s easiest to download and copy everything to a
USB stick using your operating system of choice.
Helpfully, UAE4ARM can read Amiga ADF floppy
images even if they’re in a ZIP file.

We advise copying everything to your microSD
card. Start Raspberry Pi, exit UAE4ARM, and run:

mc

Copy your game files from /media/usb to
/root/amiga/floppys, and your Kickstart ROMs,
including a Cloanto rom.key file if you have
one, to /root/amiga/kickstarts. Quit Midnight
Commander and reboot:

reboot

In the latest version 1.313 of Amibian, two
different versions of UAE4ARM are supplied.

If you plan on using two Xbox 360 controllers,
button mapping on controller two works best
using the ‘old’ version, although the ‘new’ edition
generally provides more options. To switch
between the two, at the command line type either
rpiold or rpinew. The following configuration
instructions work with both versions.

Configure UAE4ARM
First, go to the Paths tab and click Rescan ROMs
so UAE4ARM knows where to find everything.
The Configurations tab lets you select from several
preset hardware emulations, with the default
being an A1200 – just select and Load your chosen
computer. You can tweak your virtual hardware in
the CPU and FPU, Chipset, and RAM tabs.

Your configuration selection doesn’t always set
the relevant Kickstart ROM for you, so check the
ROM tab, where you can choose Kickstarts from a
pull-down menu. Note that many games require
a specific ROM or hardware configuration to work
properly, depending on which system they were
originally released for.

To run most software, you’ll need the Floppy
drives tab. Just press the … icon next to drive
DF0’s Eject button, select the desired disk image,
and click Start. By default only drive DF0 is active,
and most titles expect this configuration. To swap
disks when prompted, press F12, eject the disk
image in DF0, select the disk image you’re asked
for, and click Resume.

F12 will always pause and return you to
UAE4ARM’s main interface, so you can create a
save state – a stored image of your progress in a
game – or give up and load something new. The
Reset, Quit, and Start/Resume buttons are always
visible in UAE4ARM’s GUI. Reset completely
reboots your emulation and Resume returns you
to your current game.

UAE4ARM automatically detects Xbox
controllers. You can use two controllers
for multiplayer gaming - if the second is
unresponsive, you may need to press F11 to disable
your mouse and switch control to the pad. If you’re
running the ‘new’ version of the emulator, first
select your controllers from the pull-down Port0
and Port1 menus in the Input settings.

Now you’ve got your Amiga emulator up and
running, there’s plenty of scope to build on the
project, from setting up virtual hard disks to
install Workbench and other software onto, to
creating floppy images from your own original
Amiga disks and using Raspberry Pi’s GPIO to
connect a classic 1980s joystick.

Top Tip
Publisher-
approved
game
downloads

Amigaland
amigaland.de

Ami Sector One
magpi.cc/2dDLElL

Gremlin Graphics
World
magpi.cc/2dDKZ3S

http://amigaland.de
http://magpi.cc/2dDLElL
http://magpi.cc/2dDKZ3S

O ver the years, Raspberry Pi has become a
firm favourite among enthusiasts of retro
gaming, thanks to its ability to emulate

classic computers and consoles from a bygone
era. Many use packages such as RetroPie to create
machines capable of playing games from multiple
systems. These are usually hooked up to the
makers’ big-screen televisions.

When Chris Mills decided to emulate the
Commodore 64, however, he had smaller
ambitions. Inspired by the recently launched
miniature, THEC64 Mini, he set about producing
a tinier version of the age-old Commodore 1702
monitor. Or at least he did eventually. “The
original idea was to make a small box to hold the
monitor and a Raspberry Pi strictly for Commodore
emulation,” he says. “I wasn’t really planning on
making it quite as elaborate as it turned out to be.”

Mini marvel
Chris likes Raspberry Pi, which is why, despite
buying THEC64 Mini and enjoying its plug-and-
play nature, he prefers using Raspberry Pi for
his Commodore 64 games. “I can get a lot more
software to run on it,” he tells us. This is mainly

Testing the notion that good things come in small
packages, this tiny replica monitor was created for
Commodore 64 gaming. David Crookes reports

Commodore
monitor

 �You wouldn’t believe how
loud a ‘silent’ 50mm fan is
in a box that size

Chris
Mills

Chris has had
an interest in
computers since
the late 1970s. He
got a Commodore
128 in 1985, and
says he likes getting
things to work as
much as actually
using them.

magpi.cc/VKPkzy

M
A

K
ER

due to him running the Combian 64 emulator,
which is a distribution based on an app called Vice.

“Its single purpose is Commodore emulation,
and it boots from a cold start to the blue
Commodore screen in just a few seconds,” he
explains. “It seems a bit closer to the real hardware
experience of a Commodore computer to me and
control seems far less laggy.” Hooked up to the
monitor and with the mini-C64 to its side, along
with a joystick, it makes for an impressive setup –
in appearance alone if nothing else.

Security monitor
To achieve the look, Chris chose a small TFT LCD
security monitor. “It needed to have a 4:3 aspect
ratio since the display would be for a computer
with 320×200 resolution,” he says. “I also wanted
something that would sit on my desk without
taking up too much space. I can’t imagine a
Commodore 64 displaying on a 32-inch television,
and I grew up with a 13-inch CRT for my computers

	� No, that’s not a
huge joystick: it’s a
standard size, but
it shows just how
small the monitor
is. THEC64 Mini sits
in front

	� Cables run from the circuit board of the monitor to the back
of the new case, so that the connectors are easily accessible.
Components are cooled by a fan

PROJECT SHOWCASE

Commodore monitor44

http://magpi.cc/VKPkzy

Thanks to Combian 64, Chris
found there was nothing
to do except configure the
display and fiddle with the
emulation settings

The Commodore 64 was
renowned for its SID music chip
that deserve to be heard at their
best. “I may add a headphone
jack to connect to a larger
sound system,” Chris tells us

Chris would like to use Raspberry Pi’s GPIO
pins to light an LED to show data transfers,
but he’s happy his Raspberry Pi/monitor
combo lets him play his favourite C64 games > � �The project cost a

total of $120

> � �It took around 25
hours to make

> � �The case is made
of painted wood

> � �Raspberry Pi uses
the C64 emulator,
Combian 64

> � �Currently,
Raspberry Pi sits
outside the monitor

Quick FACTS

	� Front and back, the
monitor looks like a
professional labour
of love, with a nice
retro-style finish

so an 8-inch size seemed like a nice compromise
for space versus readability.”

The HD monitor was placed inside a wooden
case which Chris designed and crafted himself. He
removed the back of the display, connected wires
to the newly created back of the retro monitor, and
wired a pair of two-inch speakers – which proved
the trickiest part.

“I didn’t find out that the speaker mounting
holes and the bezel holes didn’t line up until I
went to put the speakers in the enclosure,” he
says. He also added a series resistor to drop the fan
voltage from 12 V to 4 V. “You wouldn’t believe how
loud a ‘silent’ 50 mm fan is in a box that size,” he
laughs. “All these years, I’ve been mistaken in my
interpretation of the world ‘silent’.”

For the finishing touch, the box was fine-
sanded as smoothly as possible and painted using
Krylon spray enamel, wet-sanded with 2000 grit

paper between coats. Chris then took a photo of
a Commodore badge from one of his real 1702
monitors. “I cropped the picture and made a metal-
looking Commodore logo,” he says. This was placed
on the front of the mini monitor. “It’s had a great
reaction from Commodore fans.”

45Retro Gaming with Raspberry Pi

PROGRAM RETRO-STYLE
GAMES WITH PYGAME ZERO

48 	� GET STARTED WITH PYGAME ZERO
Start writing computer games on Raspberry Pi

54 	� SIMPLE BRIAN
Recreate a classic electronic game

60 	� SCRAMBLED CAT
Create a sliding tile puzzle game

66 	� PIVADERS – PART 1
Start making a single-screen shoot-’em-up

74 	� PIVADERS – PART 2
Add sound effects, high scores, levels, and more

82 	� HUNGRY PI-MAN – PART 1
Code your own classic maze game

90 	� HUNGRY PI-MAN – PART 2
Add better enemy AI, power-ups, levels, and sound

100 	�AMAZEBALLS – PART 1
Start programming an isometric 3D game

106 	�AMAZEBALLS – PART 2
Create a larger, scrolling 3D maze map

112 	� AMAZEBALLS – PART 3
Improve your game with enemies and dynamite

MAKE YOUR
OWN GAMES

 �Pygame Zero is a great choice for anyone who
wants to start writing computer games

Make your own games46

47Retro Gaming with Raspberry Pi

TUTORIAL

Get started with Pygame Zero48

Pygame Zero is a great choice for anyone who wants
to start writing computer games on Raspberry Pi

I f you’ve done some Python coding and wanted
to write a game, you may have come across
Pygame. The Pygame module adds many

functions that help you to write games in Python.
Pygame Zero goes one step further to let you skip
over the cumbersome process of making all those
game loops and setting up your program structure.
You don’t need to worry about functions to load
graphics or keeping data structures for all the game
elements. If you just want to get stuck in and start
making things happen on the screen without all
the fluff, then Pygame Zero is what you need.

01 Loading a suitable program editor
The first really labour-saving thing about

Pygame Zero is that you can write a program
in a simple text editor. We advise using the
Thonny Python editor, as Pygame Zero needs to
be formatted like Python with its indents and
you’ll get the benefit of syntax highlighting to
help you along the way. So the first step in your
journey will be to open Thonny, found in the
Programming section of the Raspbian main menu
(click the raspberry icon). You’ll be presented
with a window featuring three panes.

Get started with
Pygame Zero

You’ll Need

> � �Raspbian

> � �An image
manipulation
program such
as GIMP

> � �A little imagination

> � A keyboard

The Pygame Zero
game appears in a
separate window

The Terminal window
– enter the command
to run our program

Our program listing.
shown in the top pane
of the Thonny IDE

Mark
Vanstone

Educational
software author
from the nineties,
author of the
ArcVenture series,
disappeared into
the corporate
software wasteland.
Rescued by the
Raspberry Pi!

magpi.cc/YiZnxl

@mindexplorers

M
A

K
ER

Pa
rt

 0
1

http://magpi.cc/YiZnxl

02 Writing a Pygame Zero program
The top pane is where you will write your

code. To start writing your first Pygame Zero
program, click the Save icon and save your blank
program – we suggest saving it as pygame1.py
in your default user folder (just save the file
without changing directory). And that’s it: you
have written your first Pygame Zero program!
The Pygame Zero framework assumes that you
will want to open a new window to run your game
inside, so even a blank file will create a running
game environment. Of course at this stage your
game doesn’t do very much, but you can test it to
make sure that you can get a program running.

03 Running your first 		
Pygame Zero program

With other Python programs, you can run them
directly from the Python file window. While there
is a method to enable you to do so with a Pygame
Zero program (see part 2 of this tutorial series),
let’s use the simple alternative for now. All you
need to do then is open a Terminal window from
the main Raspbian menu, and type cd pygame-
zero and type in pgzrun pygame1.py (assuming
you called your program pygame1.py) and then
hit RETURN. After a few seconds, a window titled
‘Pygame Zero Game’ should appear.

04 Setting up the basics
By default, the Pygame Zero window opens

at the size of 800 pixels wide by 600 pixels high.
If you want to change the size of your window,
there are two predefined variables you can set. If
you include WIDTH = 700 in your program, then
the window will be set at 700 pixels wide. If you
include HEIGHT = 800, then the window will be set
to 800 pixels high. In this tutorial we’ll be writing
a simple racing game, so we want our window to be
a bit taller than it is wide. When you have set the
WIDTH and HEIGHT variables, you could save your file
as race1.py and test it like before by typing pgzrun
race1.py into the Terminal window.

05 Look! No game loop!
When writing a Python game, normally

you would have a game loop – that’s a piece of
code that is run over and over while the game is

from random import randint
import pgzrun

WIDTH = 700 # Width of window
HEIGHT = 800 # Height of window
car = Actor("racecar") # Load in the car Actor image
car.pos = 250, 700 # Set the car screen position
SPEED = 4
trackCount = 0
trackPosition = 250
trackWidth = 120
trackDirection = False
trackLeft = [] # list of track barriers left
trackRight = [] # list of track barriers right
gameStatus = 0

def draw(): # Pygame Zero draw function
 global gameStatus
 screen.fill((128, 128, 128))
 if gameStatus == 0:
 car.draw()
 b = 0
 while b < len(trackLeft):
 trackLeft[b].draw()
 trackRight[b].draw()
 b += 1
 if gameStatus == 1:
 # Red Flag
 screen.blit('rflag', (318, 268))
 if gameStatus == 2:
 # Chequered Flag
 screen.blit('cflag', (318, 268))

def update(): # Pygame Zero update function
 global gameStatus , trackCount
 if gameStatus == 0:
 if keyboard.left: car.x -= 2
 if keyboard.right: car.x += 2
 updateTrack()
 if trackCount > 200: gameStatus = 2 # Chequered flag state

def makeTrack(): # Function to make a new section of track
 global trackCount, trackLeft, trackRight, trackPosition, trackWidth
 trackLeft.append(Actor("barrier", pos = (trackPosition-trackWidth,0)))
 trackRight.append(Actor("barrier", pos = (trackPosition+trackWidth,0)))
 trackCount += 1

def updateTrack(): # Function to update where the track blocks appear
 global trackCount, trackPosition, trackDirection, trackWidth,
gameStatus
 b = 0
 while b < len(trackLeft):
 if car.colliderect(trackLeft[b]) or car.colliderect(trackRight[b]):
 gameStatus = 1 # Red flag state
 trackLeft[b].y += SPEED
 trackRight[b].y += SPEED
 b += 1
 if trackLeft[len(trackLeft)-1].y > 32:
 if trackDirection == False: trackPosition += 16
 if trackDirection == True: trackPosition -= 16
 if randint(0, 4) == 1: trackDirection = not trackDirection
 if trackPosition > 700-trackWidth: trackDirection = True
 if trackPosition < trackWidth: trackDirection = False
 makeTrack()

End of functions
makeTrack() # Make first block of track

pgzrun.go()

race1.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.
040.
041.
042.
043.
044.
045.
046.
047.
048.
049.	

050.
051.
052.
053.
054.
055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.

> Language: Python magpi.cc/pgzero1

DOWNLOAD
THE FULL CODE:

http://magpi.cc/pgzero1

TUTORIAL

Get started with Pygame Zero50

WIDTH = 700
HEIGHT = 800

def draw():
 screen.fill((128, 128, 128))

figure1.py

001.
002.
003.
004.
005.

> Language: Python

running. Pygame Zero does away with this idea
and provides predefined functions to handle
each of the tasks that the game loop normally
performs. The first of these we will look at is
the function draw(). We can write this function
into our program the same as we would normally
define a function in Python, which is def draw():.
Then, so that you can see the draw function doing
something, add a line underneath indented by one
tab: screen.fill((128, 128, 128)). This is shown
in the figure1.py listing overleaf.

06 The Python format
You may have noticed that in the previous

step we said to indent the screen.fill line by one
tab. Pygame Zero follows the same formatting
rules as Python, so you will need to take care to
indent your code correctly. The indents in Python
show that the code is inside a structure. So if you
define a function, all the code inside it will be
indented by one tab. If you then have a condition

or a loop, for example an if statement, then the
contents of that condition will be indented by
another tab (so two in total).

07 All the world’s a stage
The screen object used in Step 5 is a

predefined object that refers to the window we’ve
opened for our game. The fill function fills the
window with the RGB value (a tuple value) provided
– in this case, a shade of grey. Now that we have
our stage set, we can create our actors. Actors
in Pygame Zero are dynamic graphic objects,
much the same as sprites in other programming
systems. We can load an actor by typing car =
Actor("racecar"). This is best placed near the top
of your program, before the draw() function.

08 It’s all about image
When we define an actor in our program,

what we are actually doing is saying ‘go and get
this image’. In Pygame Zero our images need to
be stored in a directory called images, next to
our program file. So our actor would be looking
for an image file in the images folder called
racecar.png. It could be a GIF or a JPG file, but it
is recommended that your images are PNG files
as that file type provides good-quality images
with transparencies. You can get a full free image
creation program called GIMP by typing sudo
apt‑get install gimp in your Terminal window.
If you want to use our images, you can download
them from magpi.cc/pgzero1.

	 �Figure 1 To set the
height and width
of a Pygame Zero
window, just set the
variables HEIGHT and
WIDTH. Then you can
fill the screen with
a colour

	 �To respond to key
presses, Pygame
Zero has a built-
in object called
keyboard. The arrow
key states can be
read with keyboard.
up, keyboard.down,
and so on

Top Tip
The graphics

If you use PNG
files for your
graphics rather
than JPGs, you
can keep part
of the image
transparent.

http://magpi.cc/pgzero1
http://keyboard.up
http://keyboard.up

TUTORIAL

51Retro Gaming with Raspberry Pi

def makeTrack(): # Function to make a new section of track
 global trackCount, trackLeft, trackRight,
trackPosition, trackWidth
 trackLeft.append(Actor("barrier", pos =
(trackPosition-trackWidth,0)))
 trackRight.append(Actor("barrier", pos =
(trackPosition+trackWidth,0)))
 trackCount += 1

figure2.py

001.
002.

003.

004.

005.

> Language: Python

def updateTrack(): # Function to update where the track
blocks appear
 global trackCount, trackPosition, trackDirection,
trackWidth
 b = 0
 while b < len(trackLeft):
 trackLeft[b].y += SPEED
 trackRight[b].y += SPEED
 b += 1
 if trackLeft[len(trackLeft)-1].y > 32:
 if trackDirection == False: trackPosition += 16
 if trackDirection == True: trackPosition -= 16
 if randint(0, 4) == 1: trackDirection = not
trackDirection
 if trackPosition > 700-trackWidth: trackDirection =
True
 if trackPosition < trackWidth: trackDirection = False
 makeTrack()

figure3.py

001.

002.

003.
004.
005.
006.
007.
008.
009.
010.
011.

012.

013.
014.

> Language: Python

09 Drawing your Actor
Once you have loaded in your image by

defining your actor, you can set its position on
the screen. You can do this straight after loading
the actor by typing car.pos = 250, 500 to set it at
position 250, 500 on the screen. Now, when the
draw() function runs, we want to display our race
car at the coordinates that we have set. So, in our
draw() function, after the screen.fill command
we can type car.draw(). This will draw our race
car at its defined position. Test your program to
make sure this is working, by saving it and running
pgzrun race1.py, as before.

10 I’m a control freak!
Once we have our car drawing on the

screen, the next stage is to enable the player
to move it backwards and forwards. We can
do this with key presses; in this case we are
going to use the left and right arrow keys. We
can read the state of these keys inside another
predefined function called update(). We can
type in the definition of this function by adding
def update(): to our program. This function is
continually checked while the game is running.
We can now add an indented if statement to
check the state of a key; e.g., if keyboard.left:.

11 Steering the car
We need to write some code to detect

key presses of both arrow keys and also to do
something if we detect that either has been
pressed. Continuing from our if keyboard.left:
line, we can write car.x -= 2. This means subtract
2 from the car’s x coordinate. It could also be
written in long-hand as car.x = car.x – 2. Then,
on the next line and with the same indent as the
first if statement, we can do the same for the right
arrow; i.e., if keyboard.right: car.x += 2. These
lines of code will move the car actor left and right.

12 The long and winding road
Now that we have a car that we can steer, we

need a track for it to drive on. We are going to build
our track out of actors, one row at a time. We will
need to make some lists to keep track of the actors
we create. To create our lists, we can write the
following near the top of our program: trackLeft =

	 �Figure 2 The
makeTrack() function.
This creates two
new Actors with the
barrier image
at the top of
the screen

	 �Figure 3 The
updateTrack()
function. Notice
the constant
SPEED – we need
to define this at the
top of our program,
perhaps starting
with the value 4

[] (note the square brackets) and then, on the next
line, trackRight = []. This creates two empty lists:
one to hold the data about the left side of the track,
and one to hold the data about the right-hand side.

13 Building the track
We will need to set up a few more variables

for the track. After your two lists, declare the
following variables: trackCount = 0 and then
trackPosition = 250, then trackWidth = 120,
and finally trackDirection = false. Then let’s
make a new function called makeTrack(). Define
this function after your update() function. See
the figure2.py listing for the code to put inside

TUTORIAL

Get started with Pygame Zero52

makeTrack(). The function will add one track actor
on the left and one on the right, both using the
image barrier.png. Each time we call this function,
it will add a section of track at the top of the screen.

14 On the move
The next thing that we need to do is to

move the sections of track down the screen
towards the car. Let’s write a new function called
updateTrack(). We will call this function in our
update() function after we do the keyboard checks.
See the figure3.py listing for the code for our
updateTrack() function. In this function we are
using randint(). This is a function that we must
load from an external module, so at the top of our
code we write from random import randint. We use
this function to make the track curve backwards
and forwards.

15 Making more track
Notice at the bottom of the updateTrack()

function, there is a call to our makeTrack()
function. This means that for each update when
the track sections move down, a new track section
is created at the top of the screen. We will need
to start this process off, so we will put a call to
makeTrack() at the bottom of our code. If we run
our code at the moment, we should see a track
snaking down towards the car. The only problem
is that we can move the car over the track barriers

def draw(): # Pygame Zero draw function
 global gameStatus
 screen.fill((128, 128, 128))
 if gameStatus == 0:
 car.draw()
 b = 0
 while b < len(trackLeft):
 trackLeft[b].draw()
 trackRight[b].draw()
 b += 1
 if gameStatus == 1:
 # Red Flag

 if gameStatus == 2:
 # Chequered Flag

def update(): # Pygame Zero update function
 global gameStatus , trackCount
 if gameStatus == 0:
 if keyboard.left: car.x -= 2
 if keyboard.right: car.x += 2
 updateTrack()
 if trackCount > 200: gameStatus = 2 # Chequered
flag state

figure4.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.

> Language: Python

	 �The race car with
barriers making up a
track to stay within.
The track pieces are
created by random
numbers so each
play is different

	 �Figure 4 The draw()
function and the
update() function
with conditions
(if statements) to
do different things
depending on the
value of gameStatus

TUTORIAL

53Retro Gaming with Raspberry Pi

and we want to keep the car inside them with some
collision detection.

16 A bit of a car crash
We need to make sure that our car

doesn’t touch the track actors. As we are
looking through the existing barrier actors in
our updateTrack() function, we may as well test
for collisions at the same time. We can write
if car.colliderect(trackLeft[b]) or
car.colliderect(trackRight[b]): and then,
indented on the next line, gameStatus = 1. We have
not covered gameStatus yet – we’ll use this variable
to show if the game is running, the car has crashed,
or we’ve reached the end of the race. Define your
gameStatus variable near the top of the program as
gameStatus = 0. You will also need to add it to the
global variables in the updateTrack() function.

17 Changing state
In this game we will have three different

states to the game stored in our variable gameStatus.
The first or default state will be that the game is
running and will be represented by the number 0.
The next state will be set if the car crashes, which
will be the number 1. The third state will be if
we have finished the race, which we’ll set as the
number 2 in gameStatus. We will need to reorganise
our draw() function and our update() function to
respond to the gameStatus variable. See the
figure4.py listing for how we do that.

18 Finishing touches
All we need to do now is to display

something if gameStatus is set to 1 or 2. If
gameStatus is 1 then it means that the car has
crashed and we should display a red flag. We can
do that with the code: screen.blit('rflag', (318,
268)). To see if the car has reached the finish, we
should count how many track sections have been
created and then perhaps when we get to 200, set
gameStatus to 2. We can do this in the update()
function as in figure4.py. Then, in the draw()
function, if the gameStatus is 2, then we can write
screen.blit('cflag', (318, 268)). Have a look at
the full code listing to see how this all fits together.

19 Did you win?
If you didn’t get the program working first

time, you are not alone – it’s quite rare to have
everything exactly right first time. Check that
you have written all the variables and functions
correctly and that the capital letters are in the right
places. Python also insists on having code properly
formatted with indents. When it’s all in place,
test your program as before and you should have a
racing game with a chequered flag at the end!

	 �Each of the barrier
blocks is checked
against the car to
detect collisions. If
the car hits a barrier,
the red flag graphic
is displayed

	 �The official Pygame
Zero documentation
can be found at
magpi.cc/fBqznh

Top Tip
Changing the
speed

If you want to
make the track
move faster
or slower, try
changing the
value of SPEED
at the start of
the program.

Top Tip
Run from IDE

Since the upgrade
to version 1.2,
programs can be
run straight from
Thonny by adding
import pgzrun
to the top of the
code and pgzrun.
go() at the bottom.

http://magpi.cc/fBqznh

TUTORIAL

Pygame Zero: Simple Brian54

Recreate a classic electronic game using Pygame Zero

L ong, long ago, before Raspberry Pi existed,
there was a game. It was a round plastic
box with four coloured buttons on top

and you had to copy what it did. To reconstruct
this classic game using Pygame Zero, we’ll first
need a name. To avoid any possible trademark
misunderstandings and because we are using
the Python language, let’s call it ‘Brian’. The
way the game works is that Brian will show you
a colour sequence by lighting up the buttons and
then you have to copy the sequence by pressing
the coloured buttons in the same sequence. Each
round, an extra button is added to the sequence
and you get a point for each round you complete
correctly. The game continues until you get the
sequence wrong.

01 Run, run as fast as you can
In the previous tutorial (page 48), we ran

code by typing the pgzrun command in a Terminal
window. With the 1.2 update of Pygame Zero,
however, there is now a way to run your programs
directly from a Python editor such as Thonny, by
adding a couple of lines of code (see figure1.py).

02 The stage is set
We’ll need some images that make up the

buttons of the Brian game. You can make your own
or get ours from GitHub at magpi.cc/pgzero2. The
images will need to be in an images directory next
to your program file. We have called our starting
images redunlit, greenunlit, blueunlit, and
yellowunlit because all the buttons will be unlit at
the start of the game. We have also got a play button
so that the player can click on it to start the game.

03 Getting the actors on stage
We can create actors by supplying an image

name and a position on the screen for it to go.
There are several ways of supplying the position
information. This time we’ll use position handles
to define where the character appears. We will

Pygame Zero
Simple Brian

You’ll Need

> � �Raspbian

> � �An image
manipulation
program such
as GIMP, or 	
images from 	
magpi.cc/pgzero2

> � ��The latest
version of
Pygame Zero

> � �A good memory

import pgzrun

Your program code will go here

pgzrun.go()

figure1.py

001.
002.
003.
004.
005.

> Language: Python

Instructions are
displayed here

The game has four
coloured buttons that light
up when they are pressed

Pa
rt

 0
2

http://magpi.cc/pgzero2
http://magpi.cc/pgzero2

TUTORIAL

55Retro Gaming with Raspberry Pi

use the same coordinates for each quadrant of the
whole graphic, but we’ll change the handle names
we use. For these actors we can use bottomright,
bottomleft, topright, and topleft, as well as the
coordinates (400,270), which is the centre point of
our whole graphic. Take a look at figure2.py.

04 Look at the state of that
We now need to add some logic to determine

if each button is on or off and show it lit or unlit
accordingly. We can do this by adding a variable to
each of our actors. We want it to be either on or off,
so we can set this variable as a Boolean value, i.e.
True or False. If we call this variable state, we can
add it to the Actor by writing (for the first button):
myButtons[0].state = False. We then do the same
for each of the button actors with their list numbers
1, 2, and 3 because we defined them as a list.

05 Light goes on, light goes off
We have defined a state for each button;

now we have to write some code to react to that
state. First, let’s make a couple of lists which hold
the names of the images we will use for the two
states. The first list will be the images we use for
the buttons being lit, which would be: buttonsLit =
['redlit', 'greenlit', 'bluelit', 'yellowlit'].
We then need a list of the unlit buttons:
buttonsUnlit = ['redunlit', 'greenunlit',
'blueunlit', 'yellowunlit']. Then we can use
these lists in an update() function to set the image
of each button to match its state. See figure3.py.

06 Switching images
We can see from figure3.py that each time

our update() function runs, we will loop through

	� There are nine positions that an Actor’s co-ordinates can
be aligned to when the Actor is created

import pgzrun

myButtons = []
myButtons.append(Actor('redunlit', bottomright=(400,270)))
myButtons.append(Actor('greenunlit', bottomleft=(400,270)))
myButtons.append(Actor('blueunlit',topright=(400,270)))
myButtons.append(Actor('yellowunlit',topleft=(400,270)))
playButton = Actor('play', pos=(400,540))

def draw(): # Pygame Zero draw function
 screen.fill((30, 10, 30))
 for b in myButtons: b.draw()
 playButton.draw()

pgzrun.go()

figure2.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.

> Language: Python magpi.cc/pgzero2

DOWNLOAD
THE FULL CODE:

import pgzrun

myButtons = []
myButtons.append(Actor('redunlit', bottomright=(400,270)))
myButtons[0].state = False
myButtons.append(Actor('greenunlit', bottomleft=(400,270)))
myButtons[1].state = False
myButtons.append(Actor('blueunlit',topright=(400,270)))
myButtons[2].state = False
myButtons.append(Actor('yellowunlit',topleft=(400,270)))
myButtons[3].state = False
buttonsLit = ['redlit', 'greenlit', 'bluelit', 'yellowlit']
buttonsUnlit = ['redunlit', 'greenunlit', 'blueunlit',
'yellowunlit']
playButton = Actor('play', pos=(400,540))

def draw(): # Pygame Zero draw function
 screen.fill((30, 10, 30))
 for b in myButtons: b.draw()
 playButton.draw()

def update(): # Pygame Zero update function
 bcount = 0
 for b in myButtons:
 if b.state == True: b.image = buttonsLit[bcount]
 else: b.image = buttonsUnlit[bcount]
 bcount += 1

pgzrun.go()

figure3.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.

014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.

> Language: Python

http://magpi.cc/pgzero2

TUTORIAL

Pygame Zero: Simple Brian56

our button list. If the button’s state is True, we
set the image of the button to the image in the
buttonsLit list. If not (i.e. the state variable is
False), we set the image of the button to the image
in the buttonsUnlit list.

07 What happens if I press this button?
We need to write a way to allow the user

to press the buttons and make them light up.
We can do this with the Pygame Zero functions
on_mouse_down() and on_mouse_up(). If the mouse
has been clicked down, we should set our button
state to True. We also need to test if the mouse
button has been released; if so, all the buttons
should be set to False. We can test the value we are
passed (pos) into these functions with the method
collidepoint(), which is part of the actor object.

08 Ups and downs
We can write a test in on_mouse_down()

for each button, to see if it has been pressed,
and then change the state of the button if it has
been pressed. We can then write code to set all
the button states to False in the on_mouse_up()
function, and our update() and draw() functions
will now reflect what we need to see on the screen
from those actions. Look at figure4.py and you will
see how we can change the state of the buttons as
a response to mouse events. When you have added
this to your program, test it to make sure that the
buttons light up correctly when clicked.

09 Write a list
Now that we have our buttons working, we

will need to make a way to use them in two different
ways. The first will be for the game to display a
sequence for the player to follow, and the second is
to receive input from the player when they repeat
the sequence. For the first task we will need to build
a list to represent the sequence and then play that
sequence to the player. Let’s define our list at the
top of the code with buttonList = [] and then make
a function def addButton(): which will create an
additional entry into the sequence each round.

def on_mouse_down(pos):
 global myButtons
 for b in myButtons:
 if b.collidepoint(pos): b.state = True

def on_mouse_up(pos):
 global myButtons
 for b in myButtons: b.state = False

figure4.py

001.
002.
003.
004.
005.
006.
007.
008.

> Language: Python

def playAnimation():
 global playPosition, playingAnimation
 playPosition = 0
 playingAnimation = True

def addButton():
 global buttonList
 buttonList.append(randint(0, 3))
 playAnimation()

figure5.py

001.
002.
003.
004.
005.
006.
007.
008.
009.

> Language: Python

def update(): # Pygame Zero update function
 global myButtons, playingAnimation, playPosition
 if playingAnimation:
 playPosition += 1
 listpos = math.floor(playPosition/LOOPDELAY)
 if listpos == len(buttonList):
 playingAnimation = False
 clearButtons()
 else:
 litButton = buttonList[listpos]
 if playPosition%LOOPDELAY > LOOPDELAY/2:
litButton = -1
 bcount = 0
 for b in myButtons:
 if litButton == bcount: b.state = True
 else: b.state = False
 bcount += 1

figure6.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.

012.
013.
014.
015.
016.

> Language: Python

	� When the mouse is clicked on a button, we switch the unlit
image for the lit image

TUTORIAL

57Retro Gaming with Raspberry Pi

10 That’s a bit random
We can generate our sequence by generating

random integers using the random module. We
can use this module by importing it at the top of
our code with: from random import randint. As
we only need the randint() function, we import
that function specifically. To add a new number to
the sequence in the addButton() function, we can
write buttonList.append(randint(0, 3)), which
will add a number between 0 and 3 to our list. Once
we have added our new number, we will want to
show the player the sequence, so add a line in the
addButton() function: playAnimation().

11 Playing the animation
We have set up our function to create the

sequence. Now we need a system to play the latter
so the player can see it. We’ll do this with a counter
variable called playPosition. We define this at the
start of our code: playPosition = 0. We’ll also need
a variable to show that our animation is playing:
playingAnimation = False, also written at the start
of the code. We can then define our playAnimation()
function that we used in the previous step. Look
at figure5.py to see how the addButton() and
playAnimation() functions are written.

12 Are we playing?
So, once we have set our animation going,

we will need to react to that in our update()
function. We know that all we need to do is change
the state of the buttons and the draw() function
will handle the visuals for us. In our update()
function, we have to say: “If the animation is
playing then increment our animation counter,
check that we haven’t reached the end of the
animation and if not then light the button (change
its state to True) which is indicated by our sequence
list.” This is a bit of a mouthful, so in figure6.py
we can see how this translates into code.

13 Getting a bit loopy
We can see from figure6.py that we are

incrementing the play position each time update()
is called. What we want to do is keep each button
in the sequence lit for several refreshes, so we
divide the playPosition by a predefined number
(LOOPDELAY) to get our list position that we want to

display. We round the result downwards with the
math.floor() function (to use this, we import the
math module at the top of the code). So if LOOPDELAY
is 80, we’ll move from one list position (listpos) to
the next every 80 times update() is called.

14 A dramatic pause
Still in figure6.py, we check to see if we have

reached the end of the buttonList with listpos. If
we have then we stop the animation. Otherwise,
if we are still running the animation, we work out
which button should be lit from our buttonList. We
could just say “light that button and set the rest
to unlit”, but before we do that we have a line that
basically says: “If we are in the second half of our
button lighting loop, set all the buttons to unlit.”
This means that we will get a pause in between each
button being lit when no buttons are lit. We can
then just loop through our buttons and set their
state according to the value of litButton.

15 Testing the animation
Now, ignoring the fact that we have a play

button ready and waiting to do something, we
can test our animation by calling the addButton()
function. This function adds a random button
number to the list and sets the animation in
motion. To test it, we can call it a few times at the
bottom of our code, just above pgzrun.go(). If we
call the addButton() function three times then three
numbers will be added to the buttonList and the
animation will start. If this all works, we are ready
to add the code to capture the player’s response.

16 I need input
We can collect the player’s clicks on the

buttons just by adding another list, playerInput, to
the definitions at the top of the code and adding a
few lines into our on_mouse_down() function. Add
a counter variable bcount = 0 at the top of the
function and then add one to bcount at the end of
the loop. Then, after if b.collidepoint(pos): we
add playerInput.append(bcount). We can then test
the player input to see if it matches the buttonList
we are looking for. We will write this as a separate
function called checkPlayerInput() and call it
at the end of our on_mouse_down() function. As
we now have the basis of our game, refer to the

Top Tip
Globals

You can read
global variables
inside a function,
but if you change
the value of the
variable, you
must declare it
as global in the
function.

Top Tip
Modulo or %

The % symbol
is used to get
the remainder
after a division
calculation.
It’s useful for
creating smaller
repeats within a
larger loop.

TUTORIAL

Pygame Zero: Simple Brian58

full listing to see how the rest of the code comes
together as we go through the final steps.

17 Game over man
The checkPlayerInput() function will check

the buttons that the player has clicked against
the list held in buttonList, which we have been
building up with the addButton() function. So we
need to loop through the playerInput list with
a counter variable – let’s call it ui, and write if
playerInput[ui] != buttonList[ui]: gameOver().
If we get to the end of the list and both playerInput
and buttonList are the same length then we know
that the player has completed the sequence and we
can signal that the score needs to be incremented.
The score variable is defined at the top of the code
as score = 0. In our on_mouse_up() function, we can
then respond to the score signal by incrementing
the score and setting the next round in motion.

18 Just press play
We still haven’t done anything with that

play button actor that we set up at the beginning.
Let’s put some code behind that to get the game
started. Make sure you have removed any testing
calls at the bottom of your code to addButton()
(Step 15). We’ll need a variable to check if the
game is started, so put gameStarted = False at the
top of the code with the other variables and then
in our on_mouse_up() function we can add a test: if
playButton.collidepoint(pos) and gameStarted
== False: and then set the gameStarted variable to
True. We can set a countdown variable when the
play button is clicked so that there is a slight pause
before the first animation starts.

19 Finishing touches
We’re nearly there with our game: we have

a way to play a random sequence and build that list
round by round, and we have a way to capture and
check user input. The last things we need are some
instructions for the player, which we can do with
the Pygame Zero screen.draw.text() function. We
will want an initial ‘Press Play to Start’ message, a
‘Watch’ message for when the animation is playing,
a ‘Now You’ message to prompt the player to
respond, and a score message to be displayed when
the game is over. Have a look in the draw() function
in the complete listing to see how these fit in.

There are many ways we can enhance our game;
for example, the original electronic game featured
sound – something we cover later (see page 74).

import pgzrun
from random import randint
import math
WIDTH = 800
HEIGHT = 600

myButtons = []
myButtons.append(Actor('redunlit',
bottomright=(400,270)))
myButtons[0].state = False
myButtons.append(Actor('greenunlit',
bottomleft=(400,270)))
myButtons[1].state = False
myButtons.append(Actor('blueunlit',
topright=(400,270)))
myButtons[2].state = False
myButtons.append(Actor('yellowunlit',
topleft=(400,270)))
myButtons[3].state = False
buttonsLit = ['redlit', 'greenlit',
'bluelit', 'yellowlit']
buttonsUnlit = ['redunlit',
'greenunlit', 'blueunlit',
'yellowunlit']
playButton = Actor('play',
pos=(400,540))
buttonList = []
playPosition = 0
playingAnimation = False
gameCountdown = -1
LOOPDELAY = 80
score = 0
playerInput = []
signalScore = False
gameStarted = False

def draw(): # Pygame Zero draw
function
 global playingAnimation, score
 screen.fill((30, 10, 30))
 for b in myButtons: b.draw()
 if gameStarted:
 screen.draw.text("Score
: " + str(score), (310, 540),
owidth=0.5, ocolor=(255,255,255),
color=(255,128,0) , fontsize=60)
 else:
 playButton.draw()
 screen.draw.
text("Play", (370, 525),
owidth=0.5, ocolor=(255,255,255),
color=(255,128,0) , fontsize=40)
 if score > 0:
 screen.draw.text("Final

brian.py

001.
002.
003.
004.
005.
006.
007.
008.	

009.
010.	

011.
012.	

013.
014.	

015.
016.
	
017.
	
	
018.
	
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.	

030.
031.
032.
033.
034.
	
	
	
035.
036.
037.
	
	
	
038.
039.

> Language: Python 3 Top Tip
Changing 	
the delay

We have used
the constant
LOOPDELAY for
timing our loops,
if the game is
running too
slow, decrease
this value at the
top of the code.

Top Tip
Using text

If you are going
to use text, it’s
a good idea to
display some on
the first screen
as it can take
a while to load
fonts for the first
time. You may
get unwanted
delays if you
load it later.

http://brian.py

TUTORIAL

59Retro Gaming with Raspberry Pi

> Language: Python 3

Score : " + str(score), (250, 20), owidth=0.5,
ocolor=(255,255,255), color=(255,128,0) ,
fontsize=60)
 else:
 screen.draw.text("Press Play to Start",
(220, 20), owidth=0.5, ocolor=(255,255,255),
color=(255,128,0) , fontsize=60)
 if playingAnimation or gameCountdown > 0:
 screen.draw.text("Watch", (330, 20),
owidth=0.5, ocolor=(255,255,255), color=(255,128,0)
, fontsize=60)
 if not playingAnimation and gameCountdown == 0:
 screen.draw.text("Now You", (310, 20),
owidth=0.5, ocolor=(255,255,255), color=(255,128,0)
, fontsize=60)

def update(): # Pygame Zero update function
 global myButtons, playingAnimation,
playPosition, gameCountdown
 if playingAnimation:
 playPosition += 1
 listpos = math.floor(playPosition/LOOPDELAY)
 if listpos == len(buttonList):
 playingAnimation = False
 clearButtons()
 else:
 litButton = buttonList[listpos]
 if playPosition%LOOPDELAY > LOOPDELAY/2:
litButton = -1
 bcount = 0
 for b in myButtons:
 if litButton == bcount: b.state = True
 else: b.state = False
 bcount += 1
 bcount = 0
 for b in myButtons:
 if b.state == True: b.image =
buttonsLit[bcount]
 else: b.image = buttonsUnlit[bcount]
 bcount += 1
 if gameCountdown > 0:
 gameCountdown -=1
 if gameCountdown == 0:
 addButton()
 playerInput.clear()

def gameOver():
 global gameStarted, gameCountdown, playerInput,
buttonList
 gameStarted = False
 gameCountdown = -1
 playerInput.clear()
 buttonList.clear()
 clearButtons()

def checkPlayerInput():
 global playerInput, gameStarted, score,
buttonList, gameCountdown, signalScore
 ui = 0
 while ui < len(playerInput):
 if playerInput[ui] != buttonList[ui]:
gameOver()
 ui += 1
 if ui == len(buttonList): signalScore = True

def on_mouse_down(pos):
 global myButtons, playingAnimation,
gameCountdown, playerInput
 if not playingAnimation and gameCountdown == 0:
 bcount = 0
 for b in myButtons:
 if b.collidepoint(pos):
 playerInput.append(bcount)
 b.state = True
 bcount += 1
 checkPlayerInput()

def on_mouse_up(pos):
 global myButtons, gameStarted, gameCountdown,
signalScore, score
 if not playingAnimation and gameCountdown == 0:
 for b in myButtons: b.state = False
 if playButton.collidepoint(pos) and gameStarted
== False:
 gameStarted = True
 score = 0
 gameCountdown = LOOPDELAY
 if signalScore:
 score += 1
 gameCountdown = LOOPDELAY
 clearButtons()
 signalScore = False

def clearButtons():
 global myButtons
 for b in myButtons: b.state = False

def playAnimation():
 global playPosition, playingAnimation
 playPosition = 0
 playingAnimation = True

def addButton():
 global buttonList
 buttonList.append(randint(0, 3))
 playAnimation()

pgzrun.go()

	
	
	
040.
041.
	
	
042.
043.
	
	
044.
045.	
	

046.
047.
048.	

049.
050.
051.
052.
053.
054.
055.
056.
057.	

058.
059.
060.
061.
062.
063.
064.
065.	

066.
067.
068.
069.
070.
071.
072.
073.
074.
075.	

076.
077.
078.
079.
080.

081.
082.
083.	

084.
085.
086.	

087.
088.
089.
090.
091.	

092.
093.
094.
095.
096.
097.
098.
099.
100.
101.
102.	

103.
104.
105.	

106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.

TUTORIAL

Pygame Zero: Scrambled Cat60

01 Decisions, decisions
When first approaching a sliding tile

game, our first thought would be to have a matrix
variable (or two-dimensional list) representing
the frame with its tiles. You would then have
a process function to handle the tiles moving
around, changing the values in each of the matrix
positions. However, Pygame Zero has a few
tricks up its sleeve which work very well in this
circumstance. Pygame Zero actors are your friends
and can save you a huge wedge of coding time.
Let’s get stuck in and set your program up with a
few standard Pygame Zero basics, as in figure1.py.

02 Getting the groundwork done
You may notice that there are several

functions in figure1.py with just the keyword pass
in them. In Python we aren‘t allowed to have an
empty function, so if we write pass in it, it means
that the function should do nothing. This enables
us to build the basic structure of our program before
we start thinking about the finer details. Now that
we have our structure, we can add some background
graphics. If you have downloaded the graphics
from our GitHub link (magpi.cc/pgzero3), we can
add a background colour with screen.fill(red,
green, blue) and then ‘blit’ a frame using screen.
blit('board', (150, 50)) in the draw() function.

03 A night on the tiles
A stylish frame is now displayed if you

run the program.This will serve as the holder for
the tiles. All we need to do to create the tiles is
to define a list to hold the tile Actors and then a
function to create and arrange the new actors in

In this third tutorial of the series, we introduce several new programming
techniques to create a sliding tile puzzle game

W hen your author first came across this
type of game, it was in the form of
a plastic frame with numbered tiles

and was handed to him by his grandmother to
keep him quiet for a while. It’s an infuriating
game much like a 2D forerunner to the Rubik’s
Cube, where the player must move jumbled up
tiles around the frame to put them back into the
correct order, except that there is only one spare
space to move tiles into and you seem to end up
with an ever more jumbled collection of tiles. In
this version, the author’s cat, Widdy, has very
kindly donated himself to be scrambled.

Pygame Zero
Scrambled Cat

You’ll Need

> � �Raspbian

> � ��An image
manipulation
program such 	
as GIMP, or 	
images from 		
magpi.cc/pgzero3

> � �The latest version of
Pygame Zero

> � �A lot of patience 	
to play the game

Tile images are cut from a
single image and measure
100×100 pixels each

Background wooden
frame image cut
from a coffee table

Pa
rt

 0
3

http://magpi.cc/pgzero3
http://magpi.cc/pgzero3

TUTORIAL

61Retro Gaming with Raspberry Pi

the frame. We can do this with a double loop to set
the x and y coordinates of each tile. So first, define
the tile list near the top of the code using tileList
= [] and then a function to make the tiles. Have a
look at figure2.py (overleaf) to see how we can do
that. We can call our makeTiles() function at the
end of the code, just before pgzrun.go().

04 Stating the obvious
One technique that we have used in both

previous tutorials in this series is to use a variable
to keep track of the overall state of the game, and
this game is no different. We need to know if the
player is allowed to interact with the tiles or if
they have completed the puzzle and a few other
things too. For this we can define a global variable
gameStatus = 0 near the top of our program. In this
game we will use the value 0 to allow the player to
interact with the tiles, then 1 to show that a tile is
being moved; 2 will mean that we are preparing the
game (more on this later), and 3 will show that the
player has completed the puzzle.

05 Point and click
We’ll be using two different types of user

input to give the player a choice of how to control
the tiles. Players can click on a tile to get it to move
into the spare space, or use the arrow keys. These
two input methods work quite differently, so let’s
look at mouse input first. Pygame Zero provides a

function on_mouse_down(pos) so we can capture a
mouse click. We then compare the coordinates in
the variable pos to the tiles to see if they collide. If
they do, then the player has clicked on a tile.

06 Which tile?
To check which tile was clicked, we can

use a for loop. We know how many tiles we have

Top Tip
Writing your
program
structure

When creating
your own
programs, you can
start by writing
a structure of
empty functions
before writing the
detailed code.
This can help to
visualise the way
the program 	
will work.

	� Figure 1 The basic setup for our Pygame Zero program

import pgzrun
WIDTH = 800
HEIGHT = 600
gameStatus = 0

def draw(): # Pygame Zero draw function
 pass

def update(): # Pygame Zero update function
 pass

def on_mouse_down(pos):
 pass

pgzrun.go()

figure1.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.

> Language: Python

	� You can find suitable images for games around the
house. For this game we used a cat

http://pgzrun.go
http://pgzrun.go

TUTORIAL

Pygame Zero: Scrambled Cat62

(15), so we can say for t in range(15):, where the
variable t will be our counter. We can then check
each tile to see if it has been clicked, with if
tileList[t].collidepoint(pos):. While we are
dealing with moving the tile, it’s a good idea to
stop the player from interacting with the game,
otherwise we may get several tiles trying to move
at once. We can change the gameStatus variable to 1
to lock the input. See the figure3.py listing for how
this works in the code.

07 Let’s get things moving
You may notice in figure3.py, in

the middle of the for loop there is a call to
moveTile(tileList[t]). This is a function that will
determine which way a tile can move. We are going
to use the colliderect() method of our tile actors
to test all directions. If no collision is detected in a
certain direction then we know that we can move
the tile that way. We’ll also include a condition to
test that the tiles cannot move outside the frame,
so we’ll be using two types of collision detection:
one with the built-in Pygame Zero actor objects
and one with a boundary check.

08 Repel borders!
First, we need to stop the tiles being

allowed through the frame border. We can do this
with a simple if condition for each direction. So
for the right border we would say if(tile.x <
borderRight): and then we would do our actor
collision test. We will need a border test for each
direction. What we are actually doing in the
moveTile() function is saying: “Can we move the
tile right, or left, or up, or down?” If the answer to
any of those is yes (and it can only be one of them
or none), then tell us which way to move.

09 Tiles to the left, tiles to the right
There is a cunning plan you can use to test if

a tile can move in a certain direction without seeing
it move. If you add 1 to the x coordinate of the tile
and then test for a collision – we are going to use a
function called checkCollide(tile) – then we will
know if a tile is to the right of our test tile. We then
set the tile back to its original position by subtracting
1 from the x coordinate, and all this happens before
the Pygame Zero draw() function is called again so
you never see anything move. We can also do the
same test for moving right, up, and down.

 �If no collision is detected, we know that
we can move the tile that way

def makeTiles():
 global tileList
 xoffset = 251
 yoffset = 151
 x = y = c = 0
 while y < 4:
 while x < 4:
 if(c < 15):
 tileList.append(Actor("img"+str(c), pos
= (xoffset+(x*100),yoffset+(y*100))))
 c += 1
 x += 1
 x = 0
 y += 1

figure2.py

001.
002.
003.
004.
005.
006.
007.
008.
009.

010.
011.
012.
013.

> Language: Python

def on_mouse_down(pos):
 if (gameStatus == 0):
 doLock()
 for t in range(15):
 if tileList[t].collidepoint(pos):
 m = moveTile(tileList[t])
 if(m != False):
 animate(tileList[t],on_
finished=releaseLock, pos=(tileList[t].x+m[1],
tileList[t].y+m[2]))
 return True
 releaseLock()

def releaseLock():
 global gameStatus
 gameStatus = 0

def doLock():
 global gameStatus
 gameStatus = 1

figure3.py

001.
002.
003.
004.
005.
006.
007.
008.

009.
010.
011.
012.
013.
014.
015.
016.
017.
018.

> Language: Python

	� Figure 2 The makeTiles() function. We loop from 0–3 with y and inside the loop from 0–3 with x

	� Figure 3 Using a locking system while player inputs are being processed

TUTORIAL

63Retro Gaming with Raspberry Pi

10 Collision course
We need to write a function that will test

to see if a collision has happened when we moved
our tile 1 unit (pixel). The checkCollide() function
loops through the tile list and checks to see if
any of the tiles are colliding with the tile that the
player has clicked on. We just loop through the tile
list and use the colliderect() method to test for
collision (and also make sure we are not testing the
tile that has been clicked) and if there is, return
True. If no collision was detected then the function
will exit with a False return value. Take a look at
figure4.py to see how we test a border and check for
tile collision.

11 Very animated
We will need to add tests for left, up, and

down to our moveTile() function; when that is
done, it will return what is known as a tuple. This is
a return value with several parts: the direction as a
string, the x offset to move the tile, and the y offset
to move the tile. This tuple gets sent back to our
on_mouse_down() function and if it’s not False then
we know we can move the tile based on the return
values. We now call the animate() function. This is
a Pygame Zero function to move an actor from one
place to another.

12 Locking player interaction
While we are animating the tile moving,

we don’t want the player to be able to click on any
other tiles. We have used our doLock() function
to change the gameStatus to 1 so that no mouse
clicks are reacted to. When the animation has
finished, we want the player to make their next
move, so in our call to animate() we include
on_finished=releaseLock. This will call the
function releaseLock() which will set the
gameStatus back to 0. This will mean that the
player can click on another tile. You will notice
from the figure3.py code listing that if the mouse
click is not on a tile then the lock is released at the
end of the function.

13 Using the arrows
The second way that we can capture

the player’s input is to use the arrow keys. This
form of input relies on the fact that if an arrow
key is pressed (for example the up arrow), there is
only one tile that is able to move in that direction

– or alternatively, no tiles are able to move in that
direction. So all we need to do is work out which
tile can move in the direction of the arrow pressed.
We are going to do this with a function called
findMoveTile(moveDirection) and we pass it the
direction of movement that we want it to look for.

14 Scanning the keyboard
First, we must check if the player is

pressing one of the arrow keys. We do this in
our update() function. We want to check if the
gameStatus is 0 before processing anything; if
it is, we can check the left arrow key by writing
if keyboard.left: findMoveTile("left"). We
then write a similar line of code for each of the
other arrow keys, passing a different string to our
findMoveTile() function. In the latter function we
use the same moveTile() function as we did with
the mouse click input, but this time we check for
the direction that has been passed by the keyboard
press check.

15 Which tile is it?
Now all we need to do is write the

findMoveTile() function that scans through the
tile actors and finds the one that can move in the
direction that the player has pressed. We loop
though our tile list and try to move each tile. If
we find it can move then we check the direction

def moveTile(tile):
 borderRight = 551
 rValue = False
 if(tile.x < borderRight): # can we go right?
 tile.x += 1
 if(not checkCollide(tile)): rValue = "right",
100, 0
 tile.x -= 1

 return rValue

def checkCollide(tile):
 for t in range(15):
 if tile.colliderect(tileList[t]) and tile !=
tileList[t]: return True
 return False

figure4.py

001.
002.
003.
004.
005.
006.

007.
008.
009.
010.
011.
012.
013.

014.

> Language: Python

	� Figure 4 An example of testing border collision and then using the Actor collision detection

TUTORIAL

Pygame Zero: Scrambled Cat64

16 Time to scramble the cat
The game is not much fun if we start with

a completed puzzle, so we need to add a system
for mixing up the tiles. There are various ways
to do this, but we thought it’d be nice if we start
the game with the tiles being scrambled move by
move. We can do this by simulating key presses
using the same functions as in the previous steps.
We can use a new gameStatus of 2 to indicate that
the player can’t interact, then cycle through a
predefined or random set of simulated key presses
until everything is jumbled up. We have used a
predefined list in this case.

17 How scrambled is scrambled?
For our scrambling, we can have a list of

movements. If we alter the number of movements
we are using then the game becomes more or
less difficult. We can start at 30 and see how that
works. Our scrambling function, scrambleCat(),
calls the findMoveTile() function and uses the
scrambleCountdown variable to check if we have
made enough moves. After each animation, we
are using a cunning trick: we always call the
releaseLock() function after an animation so we
can slip in a test to see if gameStatus is 2 and if so,
call scrambleCat() again. See figure6.py for the
scrambleCat() function.

18 Have we won yet?
At some point, there is a chance the player

will rearrange the tiles into the correct order. We’ll
need to write a check to see if this has happened
each time a tile has been moved. We know that
the positions of the tiles were correct before we
scrambled them, so we can make a list of the x and
y coordinates of each tile when we first make the
tile actors. Then all we need to do is to compare
that list with the current x and y values of our tile
actors and if they all match, we have a winner!

19 Finishing touches
You can see from the full program listing

how the checkSuccess() function works. We
can also add some text prompts into our draw()
function based on the value of gameStatus. That’s
about it! We have a working Scrambled Cat game.
You may want to add some features such as a score
based on how many moves the player makes. Or
change the images: you could have scrambled egg
or a scrambler bike or make the tile matrix larger
for an even more difficult challenge.

of movement. If it matches the direction that
we are looking for then we have a match and we
can initiate the animation to move the tile. The
figure5.py code listing shows this whole process,
from key press to animation. Note that we are
locking and unlocking the gameStatus while this is
happening, to avoid multiple moves at once.

def update(): # Pygame Zero update function
 if (gameStatus == 0):
 if keyboard.left: findMoveTile("left")
 if keyboard.right: findMoveTile("right")
 if keyboard.up: findMoveTile("up")
 if keyboard.down: findMoveTile("down")

def findMoveTile(moveDirection):
 doLock()
 for t in range(15):
 m = moveTile(tileList[t])
 if(m != False):
 if(m[0] == moveDirection):
 animate(tileList[t],on_finished=releaseLock,
pos=(tileList[t].x+m[1], tileList[t].y+m[2]))
 return True
 releaseLock()
 return False

figure5.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.

015.
016.
017.

> Language: Python

scrambleCountdown = 30
scrambleList = [2, 0, 2, 0, 3, 1, 1, 1, 3, 0, 0, 2, 1,
2, 1, 3, 3, 0, 3, 0, 2, 0, 2, 2, 1, 3, 1, 3, 3, 1, 2]

def scrambleCat():
 global gameStatus, scrambleCountdown, scrambleList
 tileDirs = ["left", "right", "up", "down"]
 if(scrambleCountdown > 0):
 mt = False
 while(mt == False):
 mt = findMoveTile(tileDirs[scrambleList
[scrambleCountdown]])
 scrambleCountdown -= 1
 gameStatus = 2
 else:
 gameStatus = 0

figure6.py

001.
002.

003.
004.
005.
006.
007.
008.
009.
010.
011.

012.
013.
014.
015.

> Language: Python

	� Figure 5 Moving tiles
from the detection of a
press of the arrow keys

	� Figure 6 scrambleCat()
function. Pass a list of
simulated keystrokes to
findMoveTile(), just
as if we were pressing
the keys

import pgzrun
WIDTH = 800
HEIGHT = 600
gameStatus = 0
tileList = []
correctList = []
scrambleCountdown = 30
scrambleList = [2, 0, 2, 0, 3, 1, 1, 1, 3, 0, 0, 2,
1, 2, 1, 3, 3, 0, 3, 0, 2, 0, 2, 2, 1, 3, 1, 3, 3,
1, 2]

def draw(): # Pygame Zero draw function
 global gameStatus
 screen.fill((141, 172, 242))
 screen.blit('board', (150, 50))
 for t in range(15):
 tileList[t].draw()
 if (gameStatus == 3): screen.draw.
text("Success!" , (315, 20), owidth=0.5,
ocolor=(255,255,255), color=(128,64,0) ,
fontsize=60)
 if (gameStatus == 2): screen.draw.text("Please
wait while we scramble the cat", (135, 540),
owidth=0.5, ocolor=(255,255,255), color=(128,64,0)
, fontsize=40)
 if (gameStatus <= 1): screen.draw.text("Click
on a tile to move it or use the arrow keys",
(95, 540), owidth=0.5, ocolor=(255,255,255),
color=(128,64,0) , fontsize=40)

def update(): # Pygame Zero update function
 if (gameStatus == 0):
 if keyboard.left: findMoveTile("left")
 if keyboard.right: findMoveTile("right")
 if keyboard.up: findMoveTile("up")
 if keyboard.down: findMoveTile("down")

def on_mouse_down(pos):
 if (gameStatus == 0):
 doLock()
 for t in range(15):
 if tileList[t].collidepoint(pos):
 m = moveTile(tileList[t])
 if(m != False):
 animate(tileList[t],on_
finished=releaseLock, pos=(tileList[t].x+m[1],
tileList[t].y+m[2]))
 return True
 releaseLock()

def findMoveTile(moveDirection):
 doLock()
 for t in range(15):
 m = moveTile(tileList[t])
 if(m != False):
 if(m[0] == moveDirection):
 animate(tileList[t],on_
finished=releaseLock, pos=(tileList[t].x+m[1],
tileList[t].y+m[2]))
 return True
 releaseLock()
 return False

def releaseLock():
 global gameStatus
 if(gameStatus == 2): scrambleCat()
 else: gameStatus = checkSuccess()

def doLock():
 global gameStatus
 gameStatus = 1

def checkSuccess():
 for t in range(15):

scrambledcat.py

001.
002.
003.
004.
005.
006.
007.
008.

009.
010.
011.
012.
013.
014.
015.
016.

017.

018.

019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.

035.
036.
037.
038.
039.
040.
041.
042.
043.
044.

045.
046.
047.
048.
049.
050.
051.
052.
053.
054.
055.
056.
057.
058.
059.

> Language: Python 3

 if(tileList[t].x != correctList[t][0] or
tileList[t].y != correctList[t][1]):
 return 0
 return 3	 # we have success!

def makeTiles():
 global tileList, correctList
 xoffset = 251
 yoffset = 151
 x = y = c = 0
 while y < 4:
 while x < 4:
 if(c < 15):
 tileList.append(Actor("img"+str(c),
pos = (xoffset+(x*100),yoffset+(y*100))))
 correctList.
append((xoffset+(x*100),yoffset+(y*100)))
 c += 1
 x += 1
 x = 0
 y += 1
 scrambleCat()

def scrambleCat():
 global gameStatus, scrambleCountdown,
scrambleList
 tileDirs = ["left", "right", "up", "down"]
 if(scrambleCountdown > 0):
 mt = False
 while(mt == False):
 mt = findMoveTile(tileDirs[scrambleList
[scrambleCountdown]])
 scrambleCountdown -= 1
 gameStatus = 2
 else:
 gameStatus = 0

def moveTile(tile):
 borderRight = 551
 borderLeft = 251
 borderTop = 151
 borderBottom = 451
 rValue = False
 if(tile.x < borderRight): # can we go right?
 tile.x += 1
 if(not checkCollide(tile)): rValue =
"right", 100, 0
 tile.x -= 1
 if(tile.x > borderLeft): # can we go left?
 tile.x -= 1
 if(not checkCollide(tile)): rValue =
"left", -100, 0
 tile.x += 1
 if(tile.y < borderBottom): # can we go down?
 tile.y += 1
 if(not checkCollide(tile)): rValue =
"down", 0, 100
 tile.y -= 1
 if(tile.y > borderTop): # can we go up?
 tile.y -= 1
 if(not checkCollide(tile)): rValue = "up",
0, -100
 tile.y += 1
 return rValue

def checkCollide(tile):
 for t in range(15):
 if tile.colliderect(tileList[t]) and tile
!= tileList[t]: return True
 return False

makeTiles()
pgzrun.go()

060.	

061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.	

073.	

074.
075.
076.
077.
078.
079.
080.
081.	

082.
083.
084.
085.
086.	

087.
088.
089.
090.
091.
092.
093.
094.
095.
096.
097.
098.
099.
100.	

101.
102.
103.
104.	

105.
106.
107.
108.	

109.
110.
111.
112.	

113.
114.
115.
116.
117.
118.	

119.
120.
121.
122.

magpi.cc/pgzero3

DOWNLOAD
THE FULL CODE:

http://scrambledcat.py
http://pgzrun.go
http://magpi.cc/pgzero3

TUTORIAL

Pygame Zero: Pivaders66

There must be very few people who have not played a
shooting game, and for some it may have been their
very first experience of a computer game

T he shooting-style game format requires
quite a few different coding techniques to
make it work. For some time, if your author

needed to learn a new coding language, he would
task himself to write an invaders game in it. This
would give a good workout through the syntax and
functions of the language.

This tutorial will be split into two parts.
In the first we will build a basic shooting game
with aliens, lasers, defence bases, and a score.
The second part (page 74) will add all the
extra bits that make it into a game similar to the
one that appeared in amusement arcades and
sports halls in the late 1970s.

Pygame Zero
PiVaders

You’ll Need

> � �Raspbian

> � �An image
manipulation
program such
as GIMP, or
images from
magpi.cc/pgzero4

> � �The latest version of
Pygame Zero

> � �A cool head as the
lasers rain down
on you

The defence bases block alien
lasers, but reduce in size each time
they are hit until they are gone

The aliens move across
the screen in a regular
formation, moving
towards the player’s bases

The player ship can be
moved left and right
with the arrow keys

The player scores points for
every alien that is destroyed

Pa
rt

 0
4

http://magpi.cc/MATfil

TUTORIAL

67Retro Gaming with Raspberry Pi

01 Let’s get stuck in
If you have read the previous tutorials,

you will know how we set up a basic Pygame Zero
program, so we can jump right in to getting things
on the screen. We will need some graphics for the
various elements of the game – you can design them
yourself or use ours from: magpi.cc/pgzero4. The
Pygame Zero default screen size is 800 width by 600
height, which is a good size for this game, so we
don’t need to define WIDTH or HEIGHT.

02 A bit of a player
Let’s start with getting the player ship on

the screen. If we call our graphic player.png, then
we can create the player Actor near the top of
our code by writing player = Actor("player",
(400, 550)).

We will probably want something a bit more
interesting than just a plain black window, so we
can add a background in our draw() function. If we
draw this first, everything else that we draw will
be on top of it. We can draw it using the blit()
function by writing screen.blit('background',
(0, 0)) – assuming we have called our background
image background.png. Then, to draw the player,
just add player.draw() afterwards.

03 Let’s get moving
We need the player ship to respond to key

presses, so we’ll check the Pygame Zero keyboard
object to see if certain keys are currently pressed.
Let’s make a new function to deal with these
inputs. We will call the function checkKeys() and
we’ll need to call it from our update() function.

In the checkKeys() function, we write if
keyboard.left: and then if player.x > 40:
player.x -= 5. We need to declare the player
Actor object as global inside our checkKeys()
function. We then write a similar piece of code to
deal with the right arrow key; figure1.py shows
how this all fits together.

04 An alien concept
We now want to create a load of aliens

in formation. You can have them in whatever
format you want, but we’ll set up three rows of
aliens with six on each row. We have an image
called alien.png and can make an Actor for each

import pgzrun

player = Actor("player", (400, 550)) # Load in the player
Actor image

def draw(): # Pygame Zero draw function
 screen.blit('background', (0, 0))
 player.draw()

def update(): # Pygame Zero update function
 checkKeys()

def checkKeys():
 global player
 if keyboard.left:
 if player.x > 40: player.x -= 5
 if keyboard.right:
 if player.x < 760: player.x += 5

pgzrun.go()

figure1.py
001.
002.
003.

004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.

alien that we will store in a list so that we can
easily loop through the list to perform actions
on them. When we create the alien Actors, we
will use a bit of maths to set the initial x and y
coordinates. It would be a good idea to define
a function to set up the aliens – initAliens()
– and because we will want to set up other
elements too, we could define a function init(),
from which we can call all the setup functions.

05 Doing the maths
To position our aliens and to create them as

Actors, we can declare a list – aliens = [] – and
then create a loop using for a in range(18):. In
this loop, we need to create each Actor and then
work out where their x and y coordinates will be
to start. We can do this in the loop by writing:
aliens.append(Actor("alien1", (210+(a %
6)*80,100+(int(a/6)*64)))). This may look
a little daunting, but we can break it down by
saying ‘x is 210 plus the remainder of dividing
by 6 multiplied by 80’.

This will provide us with x coordinates starting
at 210 and with a spacing of 80 between each. The
y calculation is similar, but we use normal division,
make it an integer, and multiply by 64.

 �Functions to create
a player ship and
background, display
them, and handle
moving the player ship

http://magpi.cc/MATfil

TUTORIAL

Pygame Zero: Pivaders68

06 Believing the strangest things
After that slightly obscure title reference,

we shall introduce the idea of the alien having a
status. As we have seen in previous instalments,
we can add extra data to our Actors, and in this case
we will want to add a status variable to the alien
after we have created it. We’ll explain how we are
going to use this a bit later. Now it’s time to get
the little guys on the screen and ready for action.
We can write a simple function called drawAlien()
and just loop through the alien list to draw them
by writing: for a in range(len(aliens)):
aliens[a].draw() . Call the drawAlien() function
inside the draw() function.

07 The aliens are coming!
We are going to create a function that

we call inside our update() function that keeps
track of what should happen to the aliens. We’ll
call it updateAliens(). We don’t want to move
the aliens every time the update cycle runs, so
we’ll keep a counter called moveCounter and
increment it each update(); then, if it gets to a
certain value (moveDelay), we will zero the counter.
If the counter is zero, we call updateAliens().
The updateAliens() function will calculate how
much they need to move in the x and y directions to
get them to go backwards and forwards across the
screen and move down when they reach the edges.

08 Updating the aliens
To work out where the aliens should move,

we’ll make a counter loop from 0 to 40. From 0 to
9 we’ll move the aliens left, on 10 we’ll move them
down, then from 11 to 29 move them right. On 30
they move down and then from 31 to 40 move left.
Have a look at figure2.py to see how we can do
this in the updateAliens() function and how that
function fits into our update() function. Notice how
we can use the Pygame Zero function animate()
to get them to move smoothly. We can also add a
switch between images to make their legs move.

09 All your base are belong to us
Now we are going to build our defence

bases. There are a few problems to overcome in
that we want to construct our bases from Actors,
but there are no methods for clipping an Actor
when it is displayed. Clipping is a term to describe
that we only display a part of the image. This is a
method we need if we are going to make the bases
shrink as they are hit by alien lasers. What we will
have to do is add a function to the Actor, just like
we have added extra variables to them before.

10 Build base
We will make three bases which will be

made of three Actors each. If we wanted to display
the whole image (base1.png), we would create
a list of base Actors and display each Actor with
some code like bases[0].draw(). What we want to
do is add a variable to the base to show how high
we want it to be. We will also need to write a new
function to draw the base according to the height
variable. Have a look at figure3.py to see how we
write the new function and attach it to each Actor.
This means we can now call this function from
each base Actor using: bases[b].drawClipped(),
as shown in the drawBases() function.

11 Can I shoot something now?
To make this into a shooting game, let’s add

some lasers. We need to fire lasers from the player
ship and also from the aliens, but we are going to
keep them all in the same list. When we create a
new laser by making an Actor and adding it to the

def updateAliens():
 global moveSequence, moveDelay
 movex = movey = 0
 if moveSequence < 10 or moveSequence > 30: movex = -15
 if moveSequence == 10 or moveSequence == 30:
 movey = 50
 if moveSequence >10 and moveSequence < 30: movex = 15
 for a in range(len(aliens)):
 animate(aliens[a], pos=(aliens[a].x + movex,
aliens[a].y + movey), duration=0.5, tween='linear')
 if randint(0, 1) == 0:
 aliens[a].image = "alien1"
 else:
 aliens[a].image = "alien1b"
 moveSequence +=1
 if moveSequence == 40: moveSequence = 0

figure2.py
001.
002.
003.
004.
005.
006.
007.
008.
009.

010.
011.
012.
013.
014.
015.

Top Tip
Beware
of deleting
elements
of a list

If you delete
a list element
while you are
looping through
it with range
(len(list)),
when you get to
the end of the
loop it will run out
of elements and
return an error
because the range
of the loop is the
original length of
the list.

 �The updateAliens()
function. Calculate
the movement for the
aliens based on the
variable moveSequence

TUTORIAL

69Retro Gaming with Raspberry Pi

list lasers[], we can give the Actor a type. In this
case we’ll make alien lasers type 0 and player lasers
type 1. We’ll also need to add a status variable.
The creation and updating of the lasers is similar
to other elements we’ve looked at; figure4.py
(overleaf) shows the functions that we can use.

12 Making the lasers work
You can see in figure4.py that we can create

a laser from the player by adding a check for the
SPACE key being pressed in our checkKeys()
function. We will use the blue laser image called
laser2.png. Once the new laser is in our list of
lasers, it will be drawn to the screen if we call the
drawLasers() function inside our draw() function.
In our updateLasers() function we loop through
the list of lasers and check which type it is. So if it is
type 1 (player), we move the laser up the screen and
then check to see if it hit anything. Notice the calls
to a listCleanup() function at the bottom. We will
come to this in a bit.

13 Collision course
Let’s look at checkPlayerLaserHit() first.

We can detect if the laser has hit any aliens by
looping round the alien list and checking with the
Actor function – collidepoint((lasers[l].x,

lasers[l].y)) – to see if a collision has occurred.
If an alien has been hit, this is where our status
variables come into play. Rather than just removing
the laser and the alien from their lists, we need to
flag them as ready to remove. The reason for this is
that if we remove anything from a list while we are

def drawClipped(self):
 screen.surface.blit(self._surf, (self.x-32, self.y-
self.height+30),(0,0,64,self.height))

def initBases():
 global bases
 bases = []
 bc = 0
 for b in range(3):
 for p in range(3):
 bases.append(Actor("base1",
midbottom=(150+(b*200)+(p*40),520)))
 bases[bc].drawClipped = drawClipped.__get__
(bases[bc])
 bases[bc].height = 60
 bc +=1

def drawBases():
 for b in range(len(bases)): bases[b].drawClipped()

figure3.py
001.
002.

003.
004.
005.
006.
007.
008.
009.
010.

011.

012.
013.
014.
015.
016.

 �Setting up an
extension function
to draw an Actor
with clipping

Top Tip
Write functions
for each
collective
action

To make coding
easier to read
rather than
having lots of
code associated
with one type
of element
in the draw()
or update()
functions, send it
out to a function
like drawLasers()
or checkKeys().

TUTORIAL

Pygame Zero: Pivaders70

looping through any of the lists then by the time we
get to the end of the list, we are an element short
and an error will be created. So we set these Actors
to be removed with status and then remove them
afterwards with listCleanup().

14 Cleaning up the mess
The listCleanup() function creates a

new empty list, then runs through the list that is
passed to it, only transferring items to the new
list that have a status of 0. This new list is then
returned back and used as the list going forward.
Now that we have made a system for one type of
laser we can easily adapt that for our alien laser
type. We can create the alien lasers in the same
way as the player lasers, but instead of waiting
for a keyboard press we can just produce them at
random intervals using if randint(0, 5) == 0:
when we are updating our aliens. We set the type to
0 rather than 1 and move them down the screen in
our updateLasers() function.

15 Covering the bases
So far, we haven’t looked at what happens

when a laser hits one of the defence bases. Because
we are changing the height of the base Actors,
the built-in collision detection won’t give us the
result we want, so we need to write another custom
function to check laser collision on the base Actor.
Our new function, collideLaser() will check the
laser coordinates against the base’s coordinates,
taking into account the height of the base. We then
attach the new function to our base Actor when
it is created. We can use the new collideLaser()
function for checking both the player and the alien
lasers and remove the laser if it hits – and if it is
an alien laser, reduce the height of the base that
was hit.

16 Laser overkill
We may want to change the number of lasers

being fired by the aliens, but at the moment our
player ship gets to fire a laser every update() cycle.
If the SPACE key is held down, a constant stream
of lasers will be fired, which not only is a little bit
unfair on the poor aliens but will also take its toll
on the speed of the game. So we need to put some
limits on the firing speed and we can do this with
another built-in Pygame Zero object: the clock. If
we add a variable laserActive to our player Actor
and set it to zero when it fires, we can then call
clock.schedule(makeLaserActive, 1.0) to call
the function makeLaserActive() after 1 second.

17 I’m hit! I’m hit!
We need to look now at what happens

when the player ship is hit by a laser. For this we
will make a multi-frame animation. We have five
explosion images to put into a list, with our normal
ship image at the beginning, and attach it to our
player Actor. We need to import the Math module,
then in each draw() cycle we write: player.image
= player.images[math.floor(player.status/6)],
which will display the normal ship image while
player.status is 0. If we set it to 1 when the player
ship is hit, we can start the animation in motion.
In the update() function we write: if player.
status > 0: player.status += 1. As the status
value increases, it will start to draw the sequence
of frames one after the other.

def checkKeys():
 global player, lasers
 if keyboard.space:
 l = len(lasers)
 lasers.append(Actor("laser2",
(player.x,player.y-32)))
 lasers[l].status = 0
 lasers[l].type = 1

def drawLasers():
 for l in range(len(lasers)): lasers[l].draw()

def updateLasers():
 global lasers, aliens
 for l in range(len(lasers)):
 if lasers[l].type == 0:
 lasers[l].y += (2*DIFFICULTY)
 checkLaserHit(l)
 if lasers[l].y > 600: lasers[l].status = 1
 if lasers[l].type == 1:
 lasers[l].y -= 5
 checkPlayerLaserHit(l)
 if lasers[l].y < 10: lasers[l].status = 1
 lasers = listCleanup(lasers)
 aliens = listCleanup(aliens)

figure4.py
001.
002.
003.
004.
005.

006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.

Top Tip
Collect all your
setup code in
one place

If possible, it is
good to have
as much of the
code that sets
everything back
to the beginning
in one place so
that you can easily
restart the game.

 �Checking the keys
that are pressed,
creating lasers,
moving them, and
checking if they have
collided with anything

TUTORIAL

71Retro Gaming with Raspberry Pi

def init():
 global lasers, score, player, moveSequence,
moveCounter, moveDelay
 initAliens()
 initBases()
 moveCounter = moveSequence = player.status = score =
player.laserCountdown = 0
 lasers = []
 moveDelay = 30
 player.images = ["player","explosion1","explosion2",
"explosion3","explosion4","explosion5"]
 player.laserActive = 1

figure5.py
001.
002.

003.
004.
005.

006.
007.
008.

009.

18 Initialisation
Now, it may seem a bit strange to be dealing

with initialisation near the end of the tutorial, but
we have been adding and changing the structure of
our game elements as we have gone along and only
now can we really see all the data that we need to
set up before the game starts. In Step 04 we created
a function called init() that we should call to get
the game started. We could also use this function
to reset everything back to start the game again.
If we have included all the initialisation functions
and variables we have talked about, we should have
something like figure5.py.

19 They’re coming in too fast!
There are a few finishing touches to do to

complete this first part. We can set a DIFFICULTY
value near the top of the code and use it on various
elements to make the game harder. We should also
add a score, which we do by adding 1000 to a global
variable score if an alien is hit, and then display
that in the top right of the screen in the draw()

function. When the game finishes (the player
has been hit or all the aliens are gone), we should
display a suitable message. Have a look at the
complete listing to see how these bits fit in. When
that’s all done, we should have the basis of a Space
Invaders game. In the next part, we will add more
into the game, such as levels, lives, sound, bonus
aliens, and a leaderboard.

Top Tip
Define several
variables at
once

If you are setting
several variables
to the same value,
you can combine
them into one line
by writing a = b =
c = 0 to set a, b,
and c to zero.

 �The initialisation of
our data. Calling this
function sets our
variables back to their
start values

 �It’s game over for now,
but we‘ll be back in
the second part to
improve the game

TUTORIAL

Pygame Zero: Pivaders72

import pgzrun
from random import randint
import math
DIFFICULTY = 1
player = Actor("player", (400, 550)) # Load in the
player Actor image

def draw(): # Pygame Zero draw function
 screen.blit('background', (0, 0))
 player.image =
player.images[math.floor(player.status/6)]
 player.draw()
 drawLasers()
 drawAliens()
 drawBases()
 screen.draw.text(str(score), topright=
(780, 10), owidth=0.5, ocolor=(255,255,255),
color=(0,64,255), fontsize=60)
 if player.status >= 30:
 screen.draw.text("GAME OVER\nPress Enter
to play again" , center=(400, 300),
owidth=0.5, ocolor=(255,255,255),
color=(255,64,0), fontsize=60)
 if len(aliens) == 0 :
 screen.draw.text("YOU WON!\nPress Enter
to play again" , center=(400, 300), owidth=0.5,
ocolor=(255,255,255), color=(255,64,0) ,
fontsize=60)

def update(): # Pygame Zero update function
 global moveCounter,player
 if player.status < 30 and len(aliens) > 0:
 checkKeys()
 updateLasers()
 moveCounter += 1
 if moveCounter == moveDelay:
 moveCounter = 0
 updateAliens()
 if player.status > 0: player.status += 1
 else:
 if keyboard.RETURN: init()

def drawAliens():
 for a in range(len(aliens)): aliens[a].draw()

def drawBases():
 for b in range(len(bases)):
 bases[b].drawClipped()

def drawLasers():
 for l in range(len(lasers)): lasers[l].draw()

def checkKeys():
 global player, lasers
 if keyboard.left:
 if player.x > 40: player.x -= 5
 if keyboard.right:
 if player.x < 760: player.x += 5
 if keyboard.space:
 if player.laserActive == 1:
 player.laserActive = 0
 clock.schedule(makeLaserActive, 1.0)
 l = len(lasers)
 lasers.append(Actor("laser2",
(player.x,player.y-32)))
 lasers[l].status = 0
 lasers[l].type = 1

def makeLaserActive():
 global player
 player.laserActive = 1

def checkBases():
 for b in range(len(bases)):
 if l < len(bases):
 if bases[b].height < 5:
 del bases[b]

def updateLasers():
 global lasers, aliens
 for l in range(len(lasers)):
 if lasers[l].type == 0:
 lasers[l].y += (2*DIFFICULTY)
 checkLaserHit(l)
 if lasers[l].y > 600:
 lasers[l].status = 1
 if lasers[l].type == 1:
 lasers[l].y -= 5
 checkPlayerLaserHit(l)
 if lasers[l].y < 10:
 lasers[l].status = 1
 lasers = listCleanup(lasers)
 aliens = listCleanup(aliens)

def listCleanup(l):
 newList = []
 for i in range(len(l)):
 if l[i].status == 0: newList.append(l[i])
 return newList

def checkLaserHit(l):
 global player

pivaders1.py

001.
002.
003.
004.
005.

006.
007.
008.
009.

010.
011.
012.
013.
014.

015.
016.

017.
018.

019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.
040.
041.

> Language: Python

042.
043.
044.
045.
046.
047.
048.
049.
050.
051.
052.
053.
054.

055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.
086.
087.
088.
089.
090.
091.

TUTORIAL

73Retro Gaming with Raspberry Pi

 if player.collidepoint((lasers[l].x,
lasers[l].y)):
 player.status = 1
 lasers[l].status = 1
 for b in range(len(bases)):
 if bases[b].collideLaser(lasers[l]):
 bases[b].height -= 10
 lasers[l].status = 1

def checkPlayerLaserHit(l):
 global score
 for b in range(len(bases)):
 if bases[b].collideLaser(lasers[l]):
 lasers[l].status = 1
 for a in range(len(aliens)):
 if aliens[a].collidepoint((lasers[l].x,
lasers[l].y)):
 lasers[l].status = 1
 aliens[a].status = 1
 score += 1000

def updateAliens():
 global moveSequence, lasers, moveDelay
 movex = movey = 0
 if moveSequence < 10 or moveSequence > 30:
 movex = -15
 if moveSequence == 10 or moveSequence == 30:
 movey = 50 + (10 * DIFFICULTY)
 moveDelay -= 1
 if moveSequence >10 and moveSequence < 30:
 movex = 15
 for a in range(len(aliens)):
 animate(aliens[a], pos=(aliens[a].x + movex,
aliens[a].y + movey), duration=0.5, tween='linear')
 if randint(0, 1) == 0:
 aliens[a].image = "alien1"
 else:
 aliens[a].image = "alien1b"
 if randint(0, 5) == 0:
 lasers.append(Actor("laser1",
(aliens[a].x,aliens[a].y)))
 lasers[len(lasers)-1].status = 0
 lasers[len(lasers)-1].type = 0
 if aliens[a].y > 500 and player.status ==
0:
 player.status = 1
 moveSequence +=1
 if moveSequence == 40: moveSequence = 0

def init():
 global lasers, score, player, moveSequence,

moveCounter, moveDelay
 initAliens()
 initBases()
 moveCounter = moveSequence = player.status =
score = player.laserCountdown = 0
 lasers = []
 moveDelay = 30
 player.images =
["player","explosion1","explosion2",
"explosion3","explosion4","explosion5"]
 player.laserActive = 1

def initAliens():
 global aliens
 aliens = []
 for a in range(18):
 aliens.append(Actor("alien1", (210+
(a % 6)*80,100+(int(a/6)*64))))
 aliens[a].status = 0

def drawClipped(self):
 screen.surface.blit(self._surf, (self.x-32,
self.y-self.height+30),(0,0,64,self.height))

def collideLaser(self, other):
 return (
 self.x-20 < other.x+5 and
 self.y-self.height+30 < other.y and
 self.x+32 > other.x+5 and
 self.y-self.height+30 + self.height >
other.y
)

def initBases():
 global bases
 bases = []
 bc = 0
 for b in range(3):
 for p in range(3):
 bases.append(Actor("base1",
midbottom=(150+(b*200)+(p*40),520)))
 bases[bc].drawClipped =
drawClipped.__get__(bases[bc])
 bases[bc].collideLaser =
collideLaser.__get__(bases[bc])
 bases[bc].height = 60
 bc +=1

init()
pgzrun.go()

092.

093.
094.
095.
096.
097.
098.
099.
100.
101.
102.
103.
104.
105.
106.

107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.

123.
124.
125.
126.
127.
128.

129.
130.
131.

132.
133.
134.
135.
136.
137.

138.
139.
140.

141.
142.
143.

144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.

156.
157.
158.
159.
160.
161.
162.

163.
164.
165.
166.
167.
168.
169.
170.
171.

172.

173.

174.
175.
176.
177.
178.

magpi.cc/pgzero4

DOWNLOAD
THE FULL CODE:

https://magpi.cc/pgzero4

TUTORIAL

Pygame Zero: PiVaders part 274

I n part one, last issue, we set up the basics for
our PiVaders single-screen shoot-’em-up with
our player ship controlled by the keyboard,

defence bases, the aliens moving backwards and
forwards across the screen, and lasers flying
everywhere. In this part we will add lives and
levels to the game, introduce a bonus alien, code a
leader board for high scores, and add some groovy
sound effects. We may even get round to adding an
introduction screen if we get time. We are going to
start from where we left off in part one. If you don’t
have the part one code and files, you can download
them from GitHub at magpi.cc/pgzero4.

This arcade shooter may be the first computer game that springs to
mind for a lot of people. Here in part two we will take our basic PiVaders
game from part one and add all the extras

Pygame Zero
PiVaders: part 2

You’ll Need

> � �An image
manipulation
program such
as GIMP, or
images from
magpi.cc/pgzero5

> � �The latest version
of Pygame Zero

> � �The Audacity
sound editor or
similar or sounds
available from
magpi.cc/pgzero5

> � �Speakers or
headphones

If the player shoots all the aliens,
they move on to the next level

Introduction screen
with input field for
player’s name

The player has three lives
at the start of the game

A bonus or ‘boss’ alien
appears from time to time

Scores from previous
games are listed on the
leader-board screen

01 You only live thrice
It was a tradition with Space Invaders to be

given three lives at the start of the game. We can
easily set up a place to keep track of our player
lives by writing player.lives = 3 in our init()
function. While we are in the init() function, let’s
add a player name variable with player.name = ""
so that we can show names on our leader board, but
we’ll come to that in a bit. To display the number of
lives our player has, we can add drawLives() to our
draw() function and then define our drawLives()
function containing a loop which ‘blits’ life.png
once for each life in the top left of the screen.

http://magpi.cc/JxQrdd
http://magpi.cc/MATfil

TUTORIAL

75Retro Gaming with Raspberry Pi

02 Life after death
Now we have a counter for how many lives

the player has, we will need to write some code to
deal with what happens when a life is lost. In part
one we ended the game when the player.status
reached 30. In our update() function we already
have a condition to check the player.status and
if there are any aliens still alive. Where we have
written if player.status == 30: we can write
player.lives -=1. We can also check to see if the
player has run out of lives when we check to see if
the RETURN (aka ENTER) key is pressed.

03 Keep calm and carry on
Once we have reduced player.lives by

one and the player has pressed the RETURN key,
all we need to do to set things back in motion is to
set player.status = 0. We may want to reset the
laser list too, because if the player was hit by a flurry
of lasers we may find that several lives are lost
without giving the player a chance to get out of the
way of subsequent lasers. We can do this by writing
lasers = []. If the player has run out of lives at
this point, we will send them off to the leader‑board
page. See figure1.py to examine the code for dealing
with lives.

04 On the level
The idea of having levels is to start the game

in an easy mode; then, when the player has shot all
the aliens, we make a new level which is a bit harder
than the last. In this case we are going to tweak a
few variables to make each level more difficult. To
start, we can set up a global variable level = 1 in
our init() function. Now we can use our level
variable to alter things as we increase the value.
Let’s start by speeding up how quickly the aliens
move down the screen as the level goes up. When
we calculate the movey value in updateAliens(),
we can write movey = 40 + (5*level) on the
condition that moveSequence is 10 or 30.

05 On the up
To go from one level to the next, the player

will need to shoot all the aliens. We can tell if
there are any aliens left if len(aliens) = 0. So,
with that in mind, we can put a condition in our
draw() function with if len(aliens) == 0: and

then draw text on the screen to say that the level
has been cleared. We can put the same condition
in the section of the update() function where
we are waiting for RETURN to be pressed. When
RETURN is pressed and the length of the aliens list
is 0, we can add 1 to level and call initAliens()
and initBases() to set things ready to start the
new level.

def draw()
 # additional drawing code
 drawLives()
 if player.status >= 30:
 if player.lives > 0:
 drawCentreText(
"YOU WERE HIT!\nPress Enter to re-spawn")
 else:
 drawCentreText(
"GAME OVER!\nPress Enter to continue")

def init():
 # additional player variables
 player.lives = 3
 player.name = ""

def drawLives():
 for l in range(player.lives):
 screen.blit("life", (10+(l*32),10))

def update():
 # additional code for life handling
 global player, lasers
 if player.status < 30 and len(aliens) > 0:
 if player.status > 0:
 player.status += 1
 if player.status == 30:
 player.lives -= 1
 else:
 if keyboard.RETURN:
 if player.lives > 0:
 player.status = 0
 lasers = []
 else:
 # go to the leader-board
 pass;

def drawCentreText(t):
 screen.draw.text(t , center=(400, 300), owidth=0.5,
ocolor=(255,255,255), color=(255,64,0) , fontsize=60)

figure1.py
001.
002.
003.
004.
005.
006.

007.
008.

009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.

	� Code to deal
with player
lives. Notice the
drawCentreText()
function to short-cut
printing text to the
centre of the screen

TUTORIAL

Pygame Zero: PiVaders part 276

06 Front and centre
You may have noticed in figure1.py

that we made a couple of calls to a function
called drawCentreText() which we have not
yet discussed. All that this function does is to
shorten the process of writing text to the centre
of the screen. We assume that the text will be
positioned at coordinates (400, 300) and will
have a set of standard style settings and colours,
and the function definition just contains one
line: screen.draw.text(t , center=(400,
300), owidth=0.5, ocolor=(255,255,255),
color=(255,64,0), fontsize=60) – where t is
passed into the function as a parameter.

07 Flying like a boss
To liven up our game a little bit, we are

going to add in a bonus or boss alien. This could
be triggered in various ways, but in this case we
will start the boss activity with a random number.
First we will need to create the boss actor. Because
there will only ever be one boss alien on screen at
any time, we can just use one actor created near
the start of our code. In this case we don’t need to

give it coordinates as we will start the game with
the boss actor not being drawn. We write boss =
Actor("boss").

08 Keeping the boss in the loop
We want to start the game with the boss

not being displayed, so we can add to our init()
function boss.active = False and then in our
draw() function if boss.active: boss.draw(),
which will mean the boss will not be drawn until
we make it active. In our update() function, along
with our other functions to update elements,
we can call updateBoss(). This function will
update the coordinates of the boss actor if it is
active or, if it is not, check to see if we need to
start a new boss flying. See figure2.py for the
updateBoss() function.

09 Did you hear that?
You may have noticed that in figure2.py

we have an element of Pygame Zero that we have
not discussed yet, and that is sound. If we write
sounds.explosion.play(), then the sound file
located at sounds/explosion.wav will be played.
There are many free sound effects for games on the
internet. If you use a downloaded WAV file, make
sure that it is fairly small. You can edit WAV sound
files with programs like Audacity. We can add
sound code to other events in the program in the
same way, like when a laser is fired.

10 More about the boss
Staying with figure2.py, note how we can

use random numbers to decide when the boss
becomes active and also when the boss fires
a laser. You can change the parameters of the
randint() function to alter the occurrence of these

def updateBoss():
 global boss, level, player, lasers
 if boss.active:
 boss.y += (0.3*level)
 if boss.direction == 0: boss.x -= (1* level)
 else: boss.x += (1* level)
 if boss.x < 100: boss.direction = 1
 if boss.x > 700: boss.direction = 0
 if boss.y > 500:
 sounds.explosion.play()
 player.status = 1
 boss.active = False
 if randint(0, 30) == 0:
 lasers.append(Actor("laser1",
(boss.x,boss.y)))
 lasers[len(lasers)-1].status = 0
 lasers[len(lasers)-1].type = 0
 else:
 if randint(0, 800) == 0:
 boss.active = True
 boss.x = 800
 boss.y = 100
 boss.direction = 0

figure2.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.

015.
016.
017.
018.
019.
020.
021.
022.

	� Code to update the
boss or bonus alien.
This code runs when
the boss is active
or uses random
numbers to see if it’s
time to make it active

	� Lasers can be very bad for your health. Best to avoid them

TUTORIAL

77Retro Gaming with Raspberry Pi

events. You can also see that we have a simple path
calculating system for the boss to make it move
diagonally down the screen. We use the level
variable to alter aspects of the movement. We treat
the boss lasers in the same way as the normal alien
lasers, but we need to have a check to see if the
boss is hit by a player laser. We do this by adding a
check to our checkPlayerLaserHit() function.

11 Three strikes and you’re out
In the previous episode, the game ended if

you were hit by a laser. In this version we have three
chances before the game ends, and when it does, we
want to display a high score table or leader board to
be updated from one player to the next. There are a
few considerations to think about here. We need a
separate screen for our leader board; we need to get
players to enter their name to put against each score
and we will have to save the score information.
In other programs in this series we have used the
variable gameStatus to control different screens,
so let’s bring that back for this program.

12 Screen switching with
gameStatus

We will need three states for the gameStatus
variable. If it is set to 0 then we should display an
intro screen where we can get the player to type
in their name. If it is set to 1 then we want to run
code for playing the game. And if it is set to 2 then
we display the leader-board page. Let’s first deal
with the intro screen. Having set our variable to 0
at the top of the code, we need to add a condition to
our draw() function: if gameStatus == 0:. Then,
under that, use drawCentreText() to show some
intro text and display the player.name string. To
start with, player.name will be blank.

13 A name is just a name
Now to respond to the player typing their

name into the intro screen. We will write a very
simple input routine and put it in the built-in
Pygame Zero function on_key_down(). figure3.py
shows how we do this. With this code, if the
player presses a key, the name of the key is added
to the player.name string unless the key is the
BACKSPACE key, in which case we remove the last
character. Notice the rather cunning way of doing

that with player.name = player.name[:-1]. We
also ignore the RETURN key, as we can deal with
that in our update() function.

14 Game on
When the player has entered their name

on the intro screen, all we need to do is detect a
press of the RETURN key in our update() function
and we can switch to the game part. We can easily
do this by just writing if gameStatus == 0:
and then under that, if keyboard.RETURN and
player.name != "": gameStatus = 1. We will
also now need to put our main game update code
under a condition, if gameStatus == 1:. We will
also need to have the same condition in the draw()
function. Once this is done, we have a system for
switching from intro screen to game screen.

15 Leader of the pack
So now we come to our leader-board screen.

It will be triggered when the player loses the third
life. When that happens, we set gameStatus to 2
and put a condition in our draw() and update()
functions to react to that. When we switch to our
leader board, we need to display the high score
list – so, we can write in our draw() function:
if gameStatus == 2: drawHighScore(). Going
back to figure1.py, you’ll see that we left a section
at the end commented out, ready for the leader
board. We can now fill this in with some code.

16 If only I learned to read and write
We are going to save all our scores in a

file so that we can get them back each time the

def on_key_down(key):
 global player
 if gameStatus == 0 and key.name != "RETURN":
 if len(key.name) == 1:
 player.name += key.name
 else:
 if key.name == "BACKSPACE":
 player.name = player.name[:-1]

figure3.py
001.
002.
003.
004.
005.
006.
007.
008.

	� Code for capturing
keyboard input for
the player to input
their name on the
introduction screen

TUTORIAL

Pygame Zero: PiVaders part 278

game is played. We can use a simple text file for
this. When a new score is available, we will have
to read the old score list in, add our new score to
the list, sort the scores into the correct order, and
then save the scores back out to create an updated
file. So, the code we need to write in our update()
function will be to call a readHighScore()
function, set our gameStatus to 2, and call a
writeHighScore() function.

17 Functions need to function
We have named three functions that

need writing in the last couple of steps:
drawHighScore(), readHighScore(), and
writeHighScore().Have a look at figure4.py to see
the code that we need in these functions. The file
reading and writing are standard Python functions.
When reading, we create a list of entries and
add each line to a list. We then sort the list into
highest-score-first order. When we write the file,
we just write each list item to the file. To draw the
leader board, we just run through the high-score
list that we have sorted and draw the lines of text
to the screen.

18 Sort it out
It’s worth mentioning the way we are

sorting the high scores. In figure4.py we are
adding a key sorting method to the list sorting
function. We do this because the list is a string
but we want to sort by the high score, which is
numerical, so we break up the string and convert
it to an integer and sort based on that value rather
than the string. If we didn’t do this and sorted as
a string then all the scores starting with 9 would
come first, then all the 8s, then all the 7s and so
on, with 9000 being shown before 80 000, which
would be wrong.

19 Well, that’s all folks
That’s about all we need for our Pygame

Zero PiVaders game other than all the additions
that you could make to it. For example, you could
have different graphics for each row of aliens.
We’re sure you can improve on the sounds that
we have supplied, and there are many ways that
the level variable can be worked into the code
to make the different levels more difficult or
more varied.

	� Code for reading,
writing, sorting, and
drawing the high
score leader board

def readHighScore():
 global highScore, score, player
 highScore = []
 try:
 hsFile = open("highscores.txt", "r")
 for line in hsFile:
 highScore.append(line.rstrip())
 except:
 pass
 highScore.append(str(score)+ " " + player.name)
 highScore.sort(key=natural_key, reverse=True)

def natural_key(string_):
 return [int(s) if s.isdigit() else s for s in
re.split(r'(\d+)', string_)]

def writeHighScore():
 global highScore
 hsFile = open("highscores.txt", "w")
 for line in highScore:
 hsFile.write(line + "\n")

def drawHighScore():
 global highScore
 y = 0
 screen.draw.text("TOP SCORES", midtop=(400, 30),
owidth=0.5, ocolor=(255,255,255), color=(0,64,255) ,
fontsize=60)
 for line in highScore:
 if y < 400:
 screen.draw.text(line, midtop=(400, 100+y),
owidth=0.5, ocolor=(0,0,255), color=(255,255,0) ,
fontsize=50)
 y += 50
 screen.draw.text("Press Escape to play again" ,
center=(400, 550), owidth=0.5, ocolor=(255,255,255),
color=(255,64,0) , fontsize=60)

figure4.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.

015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.

026.
027.
028.

029.
030.

	� All the aliens have been destroyed. It’s time to move up a level

TUTORIAL

79Retro Gaming with Raspberry Pi

import pgzrun, math, re, time
from random import randint
player = Actor(“player”, (400, 550))
boss = Actor(“boss”)
gameStatus = 0
highScore = []

def draw(): # Pygame Zero draw function
 screen.blit(‘background’, (0, 0))
 if gameStatus == 0: # display the title page
 drawCentreText(“PIVADERS\n\n\nType your
name then\npress Enter to start\n(arrow keys move,
space to fire)”)
 screen.draw.text(player.name ,
center=(400, 500), owidth=0.5, ocolor=(255,0,0),
color=(0,64,255) , fontsize=60)
 if gameStatus == 1: # playing the game
 player.image = player.images[math.
floor(player.status/6)]
 player.draw()
 if boss.active: boss.draw()
 drawLasers()
 drawAliens()
 drawBases()
 screen.draw.text(str(score)
, topright=(780, 10), owidth=0.5,
ocolor=(255,255,255), color=(0,64,255) ,
fontsize=60)
 screen.draw.text(“LEVEL “ + str(level) ,
midtop=(400, 10), owidth=0.5, ocolor=(255,255,255),
color=(0,64,255) , fontsize=60)
 drawLives()
 if player.status >= 30:
 if player.lives > 0:
 drawCentreText(“YOU WERE HIT!\
nPress Enter to re-spawn”)
 else:
 drawCentreText(“GAME OVER!\nPress
Enter to continue”)
 if len(aliens) == 0 :
 drawCentreText(“LEVEL CLEARED!\nPress
Enter to go to the next level”)
 if gameStatus == 2: # game over show the
leaderboard
 drawHighScore()

def drawCentreText(t):
 screen.draw.text(t , center=(400, 300),
owidth=0.5, ocolor=(255,255,255), color=(255,64,0)
, fontsize=60)

def update(): # Pygame Zero update function
 global moveCounter, player, gameStatus, lasers,
level, boss
 if gameStatus == 0:

 if keyboard.RETURN and player.name != “”:
gameStatus = 1
 if gameStatus == 1:
 if player.status < 30 and len(aliens) > 0:
 checkKeys()
 updateLasers()
 updateBoss()
 if moveCounter == 0: updateAliens()
 moveCounter += 1
 if moveCounter == moveDelay:
moveCounter = 0
 if player.status > 0:
 player.status += 1
 if player.status == 30:
 player.lives -= 1
 else:
 if keyboard.RETURN:
 if player.lives > 0:
 player.status = 0
 lasers = []
 if len(aliens) == 0:
 level += 1
 boss.active = False
 initAliens()
 initBases()
 else:
 readHighScore()
 gameStatus = 2
 writeHighScore()
 if gameStatus == 2:
 if keyboard.ESCAPE:
 init()
 gameStatus = 0

def on_key_down(key):
 global player
 if gameStatus == 0 and key.name != “RETURN”:
 if len(key.name) == 1:
 player.name += key.name
 else:
 if key.name == “BACKSPACE”:
 player.name = player.name[:-1]

def readHighScore():
 global highScore, score, player
 highScore = []
 try:
 hsFile = open(“highscores.txt”, “r”)
 for line in hsFile:
 highScore.append(line.rstrip())
 except:
 pass
 highScore.append(str(score)+ “ “ + player.name)
 highScore.sort(key=natural_key, reverse=True)

pivaders2.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.

012.

013.
014.

015.
016.
017.
018.
019.
020.

021.

022.
023.
024.
025.

026.
027.

028.
029.

030.

031.
032.
033.
034.

035.
036.
037.

038.

> Language: Python

039.

040.
041.
042.
043.
044.
045.
046.
047.

048.
049.
050.
051.
052.
053.
054.
055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.
086.
087.
088.
089.
090.
091.

magpi.cc/pgzero5

DOWNLOAD
THE FULL CODE:

https://magpi.cc/pgzero5

TUTORIAL

Pygame Zero: PiVaders part 280

def natural_key(string_):
 return [int(s) if s.isdigit() else s for s in
re.split(r’(\d+)’, string_)]

def writeHighScore():
 global highScore
 hsFile = open(“highscores.txt”, “w”)
 for line in highScore:
 hsFile.write(line + “\n”)

def drawHighScore():
 global highScore
 y = 0
 screen.draw.text(“TOP SCORES”, midtop=(400,
30), owidth=0.5, ocolor=(255,255,255),
color=(0,64,255) , fontsize=60)
 for line in highScore:
 if y < 400:
 screen.draw.text(line, midtop=(400,
100+y), owidth=0.5, ocolor=(0,0,255),
color=(255,255,0) , fontsize=50)
 y += 50
 screen.draw.text(“Press Escape to play
again” , center=(400, 550), owidth=0.5,
ocolor=(255,255,255), color=(255,64,0) ,
fontsize=60)

def drawLives():
 for l in range(player.lives): screen.
blit(“life”, (10+(l*32),10))

def drawAliens():
 for a in range(len(aliens)): aliens[a].draw()

def drawBases():
 for b in range(len(bases)): bases[b].
drawClipped()

def drawLasers():
 for l in range(len(lasers)): lasers[l].draw()

def checkKeys():
 global player, score
 if keyboard.left:
 if player.x > 40: player.x -= 5
 if keyboard.right:
 if player.x < 760: player.x += 5
 if keyboard.space:
 if player.laserActive == 1:
 sounds.gun.play()
 player.laserActive = 0
 clock.schedule(makeLaserActive, 1.0)
 lasers.append(Actor(“laser2”,
(player.x,player.y-32)))
 lasers[len(lasers)-1].status = 0
 lasers[len(lasers)-1].type = 1
 score -= 100

def makeLaserActive():

 global player
 player.laserActive = 1

def checkBases():
 for b in range(len(bases)):
 if l < len(bases):
 if bases[b].height < 5:
 del bases[b]

def updateLasers():
 global lasers, aliens
 for l in range(len(lasers)):
 if lasers[l].type == 0:
 lasers[l].y += 2
 checkLaserHit(l)
 if lasers[l].y > 600: lasers[l].
status = 1
 if lasers[l].type == 1:
 lasers[l].y -= 5
 checkPlayerLaserHit(l)
 if lasers[l].y < 10: lasers[l].status
= 1
 lasers = listCleanup(lasers)
 aliens = listCleanup(aliens)

def listCleanup(l):
 newList = []
 for i in range(len(l)):
 if l[i].status == 0: newList.append(l[i])
 return newList

def checkLaserHit(l):
 global player
 if player.collidepoint((lasers[l].x,
lasers[l].y)):
 sounds.explosion.play()
 player.status = 1
 lasers[l].status = 1
 for b in range(len(bases)):
 if bases[b].collideLaser(lasers[l]):
 bases[b].height -= 10
 lasers[l].status = 1

def checkPlayerLaserHit(l):
 global score, boss
 for b in range(len(bases)):
 if bases[b].collideLaser(lasers[l]):
lasers[l].status = 1
 for a in range(len(aliens)):
 if aliens[a].collidepoint((lasers[l].x,
lasers[l].y)):
 lasers[l].status = 1
 aliens[a].status = 1
 score += 1000
 if boss.active:
 if boss.collidepoint((lasers[l].x,
lasers[l].y)):
 lasers[l].status = 1
 boss.active = 0

092.
093.

094.
095.
096.
097.
098.
099.
100.
101.
102.
103.
104.

105.
106.
107.

108.
109.

110.
111.
112.

113.
114.
115.
116.
117.
118.

119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.

135.
136.
137.
138.
139.

140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.

156.
157.
158.
159.

160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.

172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.

184.
185.

186.
187.
188.
189.
190.

191.
192.

TUTORIAL

81Retro Gaming with Raspberry Pi

 score += 5000

def updateAliens():
 global moveSequence, lasers, moveDelay
 movex = movey = 0
 if moveSequence < 10 or moveSequence > 30:
movex = -15
 if moveSequence == 10 or moveSequence == 30:
 movey = 40 + (5*level)
 moveDelay -= 1
 if moveSequence >10 and moveSequence < 30:
movex = 15
 for a in range(len(aliens)):
 animate(aliens[a], pos=(aliens[a].x
+ movex, aliens[a].y + movey), duration=0.5,
tween=’linear’)
 if randint(0, 1) == 0:
 aliens[a].image = “alien1”
 else:
 aliens[a].image = “alien1b”
 if randint(0, 5) == 0:
 lasers.append(Actor(“laser1”,
(aliens[a].x,aliens[a].y)))
 lasers[len(lasers)-1].status = 0
 lasers[len(lasers)-1].type = 0
 sounds.laser.play()
 if aliens[a].y > 500 and player.status ==
0:
 sounds.explosion.play()
 player.status = 1
 player.lives = 1
 moveSequence +=1
 if moveSequence == 40: moveSequence = 0

def updateBoss():
 global boss, level, player, lasers
 if boss.active:
 boss.y += (0.3*level)
 if boss.direction == 0: boss.x -= (1*
level)
 else: boss.x += (1* level)
 if boss.x < 100: boss.direction = 1
 if boss.x > 700: boss.direction = 0
 if boss.y > 500:
 sounds.explosion.play()
 player.status = 1
 boss.active = False
 if randint(0, 30) == 0:
 lasers.append(Actor(“laser1”,
(boss.x,boss.y)))
 lasers[len(lasers)-1].status = 0
 lasers[len(lasers)-1].type = 0
 else:
 if randint(0, 800) == 0:
 boss.active = True
 boss.x = 800
 boss.y = 100
 boss.direction = 0

def init():
 global lasers, score, player, moveSequence,
moveCounter, moveDelay, level, boss
 initAliens()
 initBases()
 moveCounter = moveSequence = player.status =
score = player.laserCountdown = 0
 lasers = []
 moveDelay = 30
 boss.active = False
 player.images =
[“player”,”explosion1”,”explosion2”,”explosion3”,
”explosion4”,”explosion5”]
 player.laserActive = 1
 player.lives = 3
 player.name = “”
 level = 1

def initAliens():
 global aliens, moveCounter, moveSequence
 aliens = []
 moveCounter = moveSequence = 0
 for a in range(18):
 aliens.append(Actor(“alien1”, (210+(a %
6)*80,100+(int(a/6)*64))))
 aliens[a].status = 0

def drawClipped(self):
 screen.surface.blit(self._surf, (self.x-32,
self.y-self.height+30),(0,0,64,self.height))

def collideLaser(self, other):
 return (
 self.x-20 < other.x+5 and
 self.y-self.height+30 < other.y and
 self.x+32 > other.x+5 and
 self.y-self.height+30 + self.height >
other.y
)

def initBases():
 global bases
 bases = []
 bc = 0
 for b in range(3):
 for p in range(3):
 bases.append(Actor(“base1”,
midbottom=(150+(b*200)+(p*40),520)))
 bases[bc].drawClipped = drawClipped.__
get__(bases[bc])
 bases[bc].collideLaser =
collideLaser.__get__(bases[bc])
 bases[bc].height = 60
 bc +=1

init()
pgzrun.go()

193.
194.
195.
196.
197.
198.

199.
200.
201.
202.

203.
204.

205.
206.
207.
208.
209.
210.

211.
212.
213.
214.

215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.

226.
227.
228.
229.
230.
231.
232.
233.
234.

235.
236.
237.
238.
239.
240.
241.
242.
243.

244.
245.

246.
247.
248.

249.
250.
251.
252.

253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.

264.
265.
266.
267.

268.
269.
270.
271.
272.
273.
274.

275.
276.
277.
278.
279.
280.
281.
282.
283.

284.

285.

286.
287.
288.
289.
290.

TUTORIAL

Pygame Zero: Hungry Pi-Man82

Maze games have been popular since the 1980s. Here we will be
using more advanced Python programming techniques to create our
own addition to the genre

T he concept of Hungry Pi-Man is quite simple.
Pi-Man eats green dots (peas) in a maze to
score points. Avoid the flames unless you

have just eaten a power-up, in which case you
can eat them. In this series we have gradually
introduced new elements of Pygame Zero and also
concepts around writing games. This is the first
instalment in a two-part tutorial which will show
you some more tricks to writing arcade games with
Pygame Zero. We will also use some more advanced
programming concepts to make our games even
better. In this first part, we will put together the
basics of the Hungry Pi-Man game and introduce
the concept of adding extra Python modules to
our program.

01 Let’s get stuck in
As with the more recent episodes of this

series, let’s jump straight in, assuming that
we have our basic Pygame Zero setup done.
Let’s set our window size to WIDTH = 600 and
HEIGHT = 660. This will give us room for a roughly
square maze and a header area for some game
information. We can get our gameplay area set up
straight away by blitting two graphics – ‘header’
and ‘colourmap’ – to 0,0 and 0,80 respectively in
the draw() function. You can make these graphics
yourself or you can use ours, which can be found
at magpi.cc/pgzero6.

02 It’s amazing
Our maze for the game has a specific

layout, but you can make your own design if you
want. If you do make your own, you’ll also have

Pygame Zero
Hungry Pi-Man

You’ll Need

> � Raspbian

> � �An image
manipulation
program such as
GIMP, or images
available from
magpi.cc/pgzero6

> � �The latest version
of Pygame Zero

> � �USB joystick or
gamepad (optional)

Pa
rt

 0
6

to create two more maps (we’ll come to those in
a bit) which help with the running of the game.
The main things about the map is that it has a
central area where the flames start from and it
doesn’t have any other closed-in areas that the
flames are likely to get trapped in (they can be a bit
stupid sometimes).

03 Pie and peas
Our next challenge is to get a player actor

moving around the maze. To fit our Hungry Pi-Man
theme, for this we will have a hungry pie that goes
around eating green peas – yes, it’s a rather surreal
idea, but no stranger than the themes of many
1980s arcade games!

We’ll need two frames for our character: one
with the mouth open and one with it closed. We
can create our player actor near the top of the code
using player = Actor("piman_o"). This will
create the actor with the mouth-open graphic.
We will then set the actor’s location in an init()
function, as in previous programs.

	� Our hungry Pi-Man explores the maze, gobbling green peas
while avoiding flames

http://magpi.cc/nBSXKz

TUTORIAL

83Retro Gaming with Raspberry Pi

04 Modulify to simplify
We can get our player onto the play area by

setting player.x = 290 and player.y = 570 in
the init() function and then call player.draw()
in the draw() function, but to move the player
character we’ll need to get some input from the
player. Previously we have used keyboard and
mouse input, but this time we are going to have the
option of joystick or gamepad input. Pygame Zero
doesn’t currently directly support gamepads, but
we are going to borrow a bit of the Pygame module
to get this working. We are also going to make a
separate Python module for our input.

05 It’s a joystick.init
Setting up a new module is easy. All we need

to do is make a new file, in this case gameinput.py,
and in our main program at the top, write import
gameinput. In this new file we can import the
Pygame functions we need with from pygame
import joystick, key and from pygame.locals
import *. We can then initialise the Pygame
joystick object (this also includes gamepads) by
typing joystick.init(). We can find out how
many joysticks or gamepads are connected by using
joystick_count = joystick.get_count(). If we
find any joysticks connected, we need to initialise
them individually – see figure1.py.

06 Checking the input
We can now write a function in our

gameinput module to check input from
the player. If we define the function with
def checkInput(p): we can get the x axis of a
joystick using joyin.get_axis(0) and the y axis
by using joyin.get_axis(1). The numbers that
are returned from these calls will be between -1
and +1, with 0 being the central position. We can
check to see if the values are over 0.8 or under
-0.8, as, depending on the device, we may not
actually see -1 or 1 being returned. You may like to
test this with your gamepad or joystick to see what
range of values are returned.

07 Up, down, left, or right
The variable p that we are passing into our

checkInput() function will be the player actor. We

Top Tip
Modules

Using separate
modules means
not only is your
code easier
to follow, but
it’s easier for
a team to
work on.

gameinput Module

from pygame import joystick, key
from pygame.locals import *

joystick.init()
joystick_count = joystick.get_count()

if(joystick_count > 0):
 joyin = joystick.Joystick(0)
 joyin.init()
 # For the purposes of this tutorial
 # we are only going to use the first
 # joystick that is connected.

figure1.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.

The maze is made of
corridors and maze walls

Flames move around the
maze, looking for Pi-Man

The player is represented
by the Pi-Man character
that moves around the
maze, eating dots

TUTORIAL

Pygame Zero: Hungry Pi-Man84

can test each of the directions of the joystick at the
same time as the keyboard and then set the player
angle (so that it points in the correct direction for
movement) and also how much it needs to move.
We’ll set these by saying (for example, if the left
arrow is pressed or the joystick is moved to the
left) if key.get_pressed()[K_LEFT] or xaxis <
-0.8: and then p.angle = 180 and p.movex = -20.
See figure2.py for the full checkInput() function.

08 Get a move on!
Now we have our input function set up, we

can call it from the update() function. Because this
function is in a different module, we need to prefix
it with the module name. In the update() function
we write gameinput.checkInput(player). After
this function has been called, if there has been any
input, we should have some variables set in the
player actor that we can use to move. We can say
if player.movex or player.movey: and then use
the animate() function to move by the amount
specified in player.movex and player.movey.

09 Hold your horses
The way we have the code at the moment

means that any time there is some input, we fire
off a new animation. This will soon mean that
layers of animation get called over the top of each
other, but what we want is for the animation to run
and then start looking for new input. To do this we
need an input locking system. We can call an input
lock function before the move and then wait for
the animation to finish before unlocking to look for
more input. Look at figure3.py to see how we can
make this locking system.

10 You can’t just move anywhere
Now, here comes the interesting bit. We

want our player actor to move around the maze, but
at the moment it will go though the walls and even
off the screen. We need to restrict the movement
only to the corridors of the maze. There are several
different ways we could do this, but for this game
we’re going to have an image map marking the

figure2.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.

def checkInput(p):
 global joyin, joystick_count
 xaxis = yaxis = 0
 if joystick_count > 0:
 xaxis = joyin.get_axis(0)
 yaxis = joyin.get_axis(1)
 if key.get_pressed()[K_LEFT] or xaxis < -0.8:
 p.angle = 180
 p.movex = -20
 if key.get_pressed()[K_RIGHT] or xaxis > 0.8:
 p.angle = 0
 p.movex = 20
 if key.get_pressed()[K_UP] or yaxis < -0.8:
 p.angle = 90
 p.movey = -20
 if key.get_pressed()[K_DOWN] or yaxis > 0.8:
 p.angle = 270
 p.movey = 20

figure3.py
001.
002.
003.
004.
005.

006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.

inside update() function

 if player.movex or player.movey:
 inputLock()
 animate(player, pos=(player.x + player.
movex, player.y + player.movey), duration=1/SPEED,
tween='linear', on_finished=inputUnLock)

outside update() function

def inputLock():
 global player
 player.inputActive = False

def inputUnLock():
 global player
 player.movex = player.movey = 0
 player.inputActive = True

	� You can plug a gamepad or joystick into one of the USB ports
on your Raspberry Pi

TUTORIAL

85Retro Gaming with Raspberry Pi

areas that the player actor can move within. The
map will be a black and white one, showing just the
corridors as black and the walls as white. We will
then look at the map in the direction we want to
move and see if it is black; if it is, we can move.

11 Testing the map
To be able to test the colour of a part of an

image, we need to borrow a few functions from
Pygame again. We’ll also put our map functions
in a separate module. So make a new Python file
and call it gamemaps.py and in it we’ll write
from pygame import image, Color.

We must also load in our movement map, which
we need to do in the Pygame way: moveimage =
image.load('images/pimanmovemap.png'). Then
all we need to do is write a function to check that
the direction of the player is valid. See figure4.py
for this function.

12 Using the movemap
To use this new module, we need to

import gamemaps at the top of our main code
file and then, before we animate the player (but
after we have checked for input), we can call
gamemaps.checkMovePoint(player),which will
zero the movex and movey variables of the player
if the move is not possible. So now we should find
that the player actor can only move inside the
corridors. We do have one special case that you
may have noticed in figure4.py, and that is because
there is one corridor where the player can move
from one side of the screen to the other.

13 You spin me round
There is one more aspect to the movement

of the player actor, and that is the animation. As
Pi-Man moves, the mouth opens and shuts and
points in the direction of the movement. The
mouth opening and closing is easy enough: we
have an image for open and one for closed and
alternate between the two. For pointing in the
correct direction, we can rotate the player actor.
Unfortunately, this has a slight problem that
Pi‑Man will be upside-down when moving left. So
we just need to have one version that is switched
the other way round. See figure5.py for a function
that sorts out all of this.

figure4.py
001.
002.
003.
004.
005.
006.
007.
008.
009.

010.

gamemaps module
from pygame import image, Color
moveimage = image.load('images/pimanmovemap.png')

def checkMovePoint(p):
 global moveimage
 if p.x+p.movex < 0: p.x = p.x+600
 if p.x+p.movex > 600: p.x = p.x-600
 if moveimage.get_at((int(p.x+p.movex), int(p.y+p.
movey-80))) != Color('black'):
 p.movex = p.movey = 0

figure5.py
001.
002.
003.
004.
005.
006.
007.
008.
009.

010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.

def getPlayerImage():
 global player
 # we need to import datetime at the top of our code
 dt = datetime.now()
 a = player.angle
 # this next line will give us a number between
 # 0 and 5 depending on the time and SPEED
 tc = dt.microsecond%(500000/SPEED)/(100000/SPEED)
 if tc > 2.5 and (player.movex != 0 or player.movey
!=0):
 # this is for the closed mouth images
 if a != 180:
 player.image = "piman_c"
 else:
 # reverse image if facing left
 player.image = "piman_cr"
 else:
 # this is for the open mouth images
 if a != 180:
 player.image = "piman_o"
 else:
 player.image = "piman_or"
 # set the angle on the player actor
 player.angle = a

Top Tip
Pygame

Pygame Zero is based on Pygame, but if you want
to use some of the Pygame functions, best to do it
in a separate module to avoid confusion.

TUTORIAL

Pygame Zero: Hungry Pi-Man86

14 Spot on
So when we have put in a call to

getPlayerImage() just before we draw the player
actor, we should have Pi-Man moving around,
chomping and pointing in the correct direction.
Now we need something to chomp. We are going
to create a set of dots at even spacings along most
of the corridors. An easy way to do this is to use
a similar technique that we’re using for testing
where the corridors are. If we make an image map
of the places the dots need to go and loop over the

whole map, only placing dots where it is black, we
can get the desired effect.

15 Tasty, tasty dots
To get our dots doing their thing, we’ll need

to code a few things. We need to initialise actors
for each dot, we need to draw each dot, and if the
player eats the dot, we need to stop drawing it;
figure6.py shows how we can do each of these
jobs. We need initDots(), we need to add another
function to gamemaps.py to work out where
to position the dots, and we need to add some
drawing code to the draw() function. In addition
to the code in figure6.py, we need to add a call to
initDots() in our init() function.

16 Avoid the flames
Now that we have our Pi-Man happily

munching green peas, we must introduce our
villains to the mix. Four hot flames, each rendered
in a different colour, roam the maze looking for
Pi-Man, starting from an enclosure in the centre
of the map. We can initialise each flame as an
actor to appear at the centre of the maze and keep
them in a list called flames[]. To start off with,
we’ll just make them move around randomly. The
way we can do this is to set a random direction
(flames[g].dir) for each and then keep them
moving until they hit a wall.

17 Random motion
We can use the same system that we used to

check player movement for the flames. Each time
we move a flame – moveFlames() – we can get a list
of which directions are available to it. If the current
direction (flames[g].dir) is not available, then we
randomly pick another direction until we find one
that we can move in. We can also have a random
occurrence of changing direction, just to make it a
bit less predictable – and if the flames collide with
each other, we could do the same. When we have
moved the flames with the animate() function,
we get it to count how many flames have finished
moving. When they are all done, we can call the
moveFlames() function again.

figure6.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.

012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.

024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.

This goes in the main code file.

def initDots():
 global piDots
 piDots = []
 a = x = 0
 while x < 30:
 y = 0
 while y < 29:
 if gamemaps.checkDotPoint(10+x*20, 10+y*20):
 piDots.append(Actor("dot",(10+x*20,
90+y*20)))
 piDots[a].status = 0
 a += 1
 y += 1
 x += 1

This goes in the gamemaps module file.

dotimage = image.load('images/pimandotmap.png')

def checkDotPoint(x,y):
 global dotimage
 if dotimage.get_at((int(x), int(y))) ==
Color('black'):
 return True
 return False

This bit goes in the draw() function.

 piDotsLeft = 0
 for a in range(len(piDots)):
 if piDots[a].status == 0:
 piDots[a].draw()
 piDotsLeft += 1
 if piDots[a].collidepoint((player.x, player.y)):
 piDots[a].status = 1
 # if there are no dots left, the player has won
 if piDotsLeft == 0: player.status = 2

TUTORIAL

87Retro Gaming with Raspberry Pi

gameinput.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.

> Language: Python 3

gameinput Module

from pygame import joystick, key
from pygame.locals import *

joystick.init()
joystick_count = joystick.get_count()

if(joystick_count > 0):
 joyin = joystick.Joystick(0)
 joyin.init()

def checkInput(p):
 global joyin, joystick_count
 xaxis = yaxis = 0
 if joystick_count > 0:
 xaxis = joyin.get_axis(0)
 yaxis = joyin.get_axis(1)
 if key.get_pressed()[K_LEFT] or xaxis < -0.8:
 p.angle = 180
 p.movex = -20
 if key.get_pressed()[K_RIGHT] or xaxis > 0.8:
 p.angle = 0
 p.movex = 20
 if key.get_pressed()[K_UP] or yaxis < -0.8:
 p.angle = 90
 p.movey = -20
 if key.get_pressed()[K_DOWN] or yaxis > 0.8:
 p.angle = 270
 p.movey = 20

18 Light a flame
The last thing to do with our flames is to

actually draw them to the screen. We can create
a function called drawFlames() where we loop
through the four flames and draw them to the
screen. One of the details of the original game
was that the eyes of the flames would follow the
player; we can do this by setting the flame image
to reverse if the player is to the left of the flame.
We have numbered images so that flame one is
flame1.png and flame two is flame2.png, etc. Have
a look at the full piman1.py program listing to see
all the functions that make the flames work.

19 Game over
Of course, we need to deal with the end-of-

the-game conditions and, as before, we can use
a status variable. In this case we have previously
set player.status = 2 if the player wins. We
can check to see if a flame collides with the player
and set player.status = 1. Then we just need to
display some text in the draw() function based on
this variable. And that’s it for part one. In the next
part we’ll be giving the flames more brains, adding
levels, lives, and power-ups – and adding some
sweet, soothing music and sound effects.

	� Three maps are used: one
which we see, one to check
possible movements, and
one to check where dots
are to be placed

Top Tip
Animations

When using the animate() function, it is best to use
the callback function to see when it has finished, as
different systems may work at different speeds.

Movement MapColour Map Dot Location Map

TUTORIAL

Pygame Zero: Hungry Pi-Man88

import pgzrun
import gameinput
import gamemaps
from random import randint
from datetime import datetime
WIDTH = 600
HEIGHT = 660

player = Actor("piman_o") # Load in the player Actor image
SPEED = 3

def draw(): # Pygame Zero draw function
 global piDots, player
 screen.blit('header', (0, 0))
 screen.blit('colourmap', (0, 80))
 piDotsLeft = 0
 for a in range(len(piDots)):
 if piDots[a].status == 0:
 piDots[a].draw()
 piDotsLeft += 1
 if piDots[a].collidepoint((player.x, player.y)):
 piDots[a].status = 1
 if piDotsLeft == 0: player.status = 2
 drawFlames()
 getPlayerImage()
 player.draw()
 if player.status == 1: screen.draw.text("GAME OVER"
, center=(300, 434), owidth=0.5, ocolor=(255,255,255),
color=(255,64,0) , fontsize=40)
 if player.status == 2: screen.draw.text("YOU WIN!"
, center=(300, 434), owidth=0.5, ocolor=(255,255,255),
color=(255,64,0) , fontsize=40)

def update(): # Pygame Zero update function
 global player, moveFlamesFlag, flames
 if player.status == 0:
 if moveFlamesFlag == 4: moveFlames()
 for g in range(len(flames)):
 if flames[g].collidepoint((player.x, player.y)):
 player.status = 1
 pass
 if player.inputActive:
 gameinput.checkInput(player)
 gamemaps.checkMovePoint(player)
 if player.movex or player.movey:
 inputLock()
 animate(player, pos=(player.x + player.movex,
player.y + player.movey), duration=1/SPEED, tween='linear',
on_finished=inputUnLock)

def init():

piman1.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.

028.

029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.
040.
041.
042.
043.

044.
045.

> Language: Python 3

gamemaps.py

001.
002.
003.
004.

005.

006.
007.
008.
009.

010.

011.

012.
013.
014.
015.
016.

017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.

029.
030.

031.
032.

033.
034.

035.

> Language: Python 3

gamemaps module

from pygame import image, Color
moveimage = image.load('images/
pimanmovemap.png')
dotimage = image.load('images/
pimandotmap.png')

def checkMovePoint(p):
 global moveimage
 if p.x+p.movex < 0: p.x =
p.x+600
 if p.x+p.movex > 600: p.x = p.x-
600
 if moveimage.get_at((int(p.x+p.
movex), int(p.y+p.movey-80))) !=
Color('black'):
 p.movex = p.movey = 0

def checkDotPoint(x,y):
 global dotimage
 if dotimage.get_at((int(x),
int(y))) == Color('black'):
 return True
 return False

def getPossibleDirection(g):
 global moveimage
 if g.x-20 < 0:
 g.x = g.x+600
 if g.x+20 > 600:
 g.x = g.x-600
 directions = [0,0,0,0]
 if g.x+20 < 600:
 if moveimage.get_
at((int(g.x+20), int(g.y-80))) ==
Color('black'): directions[0] = 1
 if g.x < 600 and g.x >= 0:
 if moveimage.get_
at((int(g.x), int(g.y-60))) ==
Color('black'): directions[1] = 1
 if g.x-20 >= 0:
 if moveimage.get_
at((int(g.x-20), int(g.y-80))) ==
Color('black'): directions[2] = 1
 if g.x < 600 and g.x >= 0:
 if moveimage.get_
at((int(g.x), int(g.y-100))) ==
Color('black'): directions[3] = 1
 return directions

TUTORIAL

89Retro Gaming with Raspberry Pi

046.
047.
048.
049.
050.
051.
052.
053.
054.
055.
056.
057.
058.
059.

060.
061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.

086.

087.
088.
089.
090.
091.
092.
093.

magpi.cc/pgzero6

DOWNLOAD
THE FULL CODE:

 global player
 initDots()
 initFlames()
 player.x = 290
 player.y = 570
 player.status = 0
 inputUnLock()

def getPlayerImage():
 global player
 dt = datetime.now()
 a = player.angle
 tc = dt.microsecond%(500000/SPEED)/(100000/SPEED)
 if tc > 2.5 and (player.movex != 0 or player.movey
!=0):

if a != 180:
player.image = "piman_c"

else:
player.image = "piman_cr"

 else:
if a != 180:

player.image = "piman_o"
else:

player.image = "piman_or"
 player.angle = a

def drawFlames():
 for g in range(len(flames)):

if flames[g].x > player.x:
flames[g].image = "flame"+str(g+1)+"r"

else:
flames[g].image = "flame"+str(g+1)

flames[g].draw()

def moveFlames():
 global moveFlamesFlag
 dmoves = [(1,0),(0,1),(-1,0),(0,-1)]
 moveFlamesFlag = 0
 for g in range(len(flames)):

dirs = gamemaps.getPossibleDirection(flames[g])
if flameCollided(flames[g],g) and randint(0,3)

== 0: flames[g].dir = 3
if dirs[flames[g].dir] == 0 or randint(0,50) ==

0:
d = -1
while d == -1:

rd = randint(0,3)
if dirs[rd] == 1:

d = rd
flames[g].dir = d

animate(flames[g], pos=(flames[g].x

+ dmoves[flames[g].dir][0]*20, flames[g].y +
dmoves[flames[g].dir][1]*20), duration=1/SPEED,
tween='linear', on_finished=flagMoveFlames)

def flagMoveFlames():
 global moveFlamesFlag
 moveFlamesFlag += 1

def flameCollided(ga,gn):
 for g in range(len(flames)):

if flames[g].colliderect(ga) and g != gn:
return True

 return False

def initDots():
 global piDots
 piDots = []
 a = x = 0
 while x < 30:

y = 0
while y < 29:

if gamemaps.checkDotPoint(10+x*20, 10+y*20):
piDots.append(Actor("dot",(10+x*20,

90+y*20)))
piDots[a].status = 0
a += 1

y += 1
x += 1

def initFlames():
 global flames, moveFlamesFlag
 moveFlamesFlag = 4
 flames = []
 g = 0
 while g < 4:

flames.append(Actor("flame"+str(g+1)
,(270+(g*20), 370)))

flames[g].dir = randint(0, 3)
g += 1

def inputLock():
 global player
 player.inputActive = False

def inputUnLock():
 global player
 player.movex = player.movey = 0
 player.inputActive = True

init()
pgzrun.go()

094.
095.
096.
097.
098.
099.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.

114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.

126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.

https://magpi.cc/pgzero6

TUTORIAL

Pygame Zero: Hungry Pi-Man part 290

I n part one, we created a maze for our player to
move around, and restricted movement to just
the corridors. We provided some dots (green

peas) to eat and some flames to avoid. In this
part we are going to give the flames some more
brains so that they are a bit more challenging to
the player. We will also add the bonus power-ups
which turn the flames into tasty edibles, give Pi-
Man some extra levels to explore and some extra
lives. So far in this series we have not dealt with
music, so we will have a go at putting some music
and sound effects into the game.

01 Need more brains
Also in part one, we left our flames

wandering around the maze randomly without
much thought for what they were doing, which was
a bit unfair as Pi-Man could evade them without
too much trouble. In the original game, each flame
had a program that it followed to characterise its
movements. We are going to add some brains to
two of the flames. The first we will make follow
Pi-Man, and the second we will get to ambush
by moving ahead of Pi-Man. We will still leave in
some random movement, otherwise it may get a
bit too difficult.

02 Follow the leader
First, let’s get the red flame to follow

Pi-Man. We already have a moveFlames() function

In part two of our tutorial, we add some groovy features to the
basic game created last time, including better enemy AI, power-
ups, levels, and sound

Pygame Zero
Hungry Pi-Man:
part 2

Pa
rt

 0
7

You’ll Need

> � Raspbian

> � �An image
manipulation
program such as
GIMP, or images
available from
magpi.cc/pgzero7

> � �The latest version
of Pygame Zero
(1.2)

> � �USB joystick or
gamepad (optional)

> � �Headphones
or speakers

Pi-Man gets points for eating dots,
and flames after eating power-ups

If all the dots are eaten, Pi-Man
moves up a level; he has three lives
before the game is over

If Pi-Man eats a power-up, the
flames turn dark and are edible

TUTORIAL

91Retro Gaming with Raspberry Pi

from part one and we can add a condition to see
if we are dealing with the first flame: if g == 0:
followPlayer(g, dirs). This calls followPlayer()
if it’s the first flame. The followPlayer() function
receives a list of directions that the flame can
move in. It then tests the x coordinate of the player
against the x coordinate of the flame and, if the
direction is valid, sets the flame direction to move
toward the player. Then it does the same with
the y coordinates.

03 Y over x
The keen-witted among you will have

noticed that if x and y movements towards the
player are both valid, then the y direction will
always win. We could throw in another random
number to choose between the two, but in testing
this arrangement it doesn’t cause any significant
problem with the movement. See figure1.py for
the followPlayer() function. You will see there is a
special condition aboveCentre() when we check the
downward movement. We are checking that the
flame is not just above the centre, otherwise it will
go back into its starting enclosure.

04 The central problem
If we go back to the moveFlames() function,

we need another centre-related condition: if
inTheCentre(flames[g]). This is because if we leave
the flame to randomly move around our centre
enclosure, it may take a long time to get out. In
part one, you may have noticed that from time

figure1.py
001.
002.
003.
004.
005.
006.
007.
008.
009.

010.
011.
012.
013.
014.
015.

016.
017.

def followPlayer(g, dirs):
 d = flames[g].dir
 if d == 1 or d == 3:
 if player.x > flames[g].x and dirs[0] == 1:
 flames[g].dir = 0
 if player.x < flames[g].x and dirs[2] == 1:
 flames[g].dir = 2
 if d == 0 or d == 2:
 if player.y > flames[g].y and dirs[1] == 1 and not
aboveCentre(flames[g]): flames[g].dir = 1
 if player.y < flames[g].y and dirs[3] == 1:
 flames[g].dir = 3

def aboveCentre(ga):
 if ga.x > 220 and ga.x < 380 and ga.y > 300 and ga.y
< 320:
 return True
 return False

to time one flame would get stuck in the centre.
What we do is, if we detect that a flame is in the
centre, we always default to direction 3, which is
up. If we run the game with this condition and
the followPlayer() function, we should see all
the flames making their way straight out of the
centre and then the red flame making a bee-line
towards Pi-Man.

	� Adding a brain to
a flame to follow
the player

TUTORIAL

Pygame Zero: Hungry Pi-Man part 292

05 It’s an ambush!
So, the next brain to implant is for

the second flame. We will add a function
ambushPlayer() in the same way we did for the first
flame, but this time if g == 1:. The ambushPlayer()
function works very much like the followPlayer()
function, but this time we just check the direction
that Pi-Man is currently moving and try to move in
that direction. We, of course, cannot know which
direction the player is going to move, and this may
seem a bit of a simplistic approach to ambushing
the player, but it is surprising how many times
Pi‑Man ends up wedged between these two flames
with this method.

06 Scores on the doors
Brain functions could be added to all the

flames, but we are going to leave the flame brains
for now as there is plenty more to do to get our

figure2.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.

This code goes in the update() function

 if player.status == 1:
 i = gameinput.checkInput(player)
 if i == 1:
 player.status = 0
 player.x = 290
 player.y = 570

This code goes in the gameinput module
in the checkInput() function

 if joystick_count > 0:
 jb = joyin.get_button(1)
 else:
 jb = 0
 if p.status == 1:
 if key.get_pressed()[K_RETURN] or jb:
 return 1

	� Checking to see if ENTER
or button A has been
pressed and resetting the
player actor

	� Pi-Man gets three lives.
You can use the gamepad
or joystick buttons to ask
for input from the player

TUTORIAL

93Retro Gaming with Raspberry Pi

game completed. Before we go any further, we
ought to get a scoring system going and reward Pi-
Man for all the dots eaten. We can attach the score
variable to the player actor near the top of our code
with player.score = 0 and then each time a dot
is eaten we add 10 to the score with player.score
+= 10. We can also display the score in the draw()
function (probably top right is best) with screen.
draw.text().

07 Three strikes and you’re out!
As is the tradition in arcade games, you

get three lives before it’s game over. If you
followed our previous tutorial for PiVaders, you
will already know how we do this. We just add a
lives variable to the player actor and then each
time Pi-Man is caught by a flame, we take a life off,
set player.status = 1, and print a message to say
press ENTER. When pressed, we set player.status
= 0 and send Pi-Man back to the starting place.
Then we continue. Have a look at figure2.py to see
the code we add to reset Pi-Man to the start.

08 Printing lives
We have the system for keeping track of

the player.lives variable, but we also need to
show the player how many lives they have left.
We can do this with a simple loop like we used
in the previous PiVaders tutorial. We can have
a drawLives() function which we call from our
draw() function. In that function, we go round a
loop for the number of lives we have by saying for
l in range(player.lives): and then we can use
the same image that we use for the player and say
screen.blit("piman_o", (10+(l*32),40)).

09 Which button to press
You may notice in figure2.py that in our

gameinput module we are checking a joystick
button as well as the ENTER key. You may want to
do a few tests with the gamepads or joysticks that
you’re using, as the buttons may have different
numbers. You can also prompt the player to press
(in this case) the A button to continue. If you were
designing a game that relied on several buttons
being used, you might want to set up a way of
mapping the buttons to values depending on what
type of gamepad or joystick is being used.

figure3.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.

013.
014.
015.
016.
017.

018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.

029.
030.
031.
032.

This code is in our main code file (piman2.py)

def initDots():
 global piDots
 piDots = []
 a = x = 0
 while x < 30:
 y = 0
 while y < 29:
 d = gamemaps.checkDotPoint(10+x*20, 10+y*20)
 if d == 1:
 piDots.append(Actor("dot",(10+x*20,
90+y*20)))
 piDots[a].status = 0
 piDots[a].type = 1
 a += 1
 if d == 2:
 piDots.append(Actor("power",(10+x*20,
90+y*20)))
 piDots[a].status = 0
 piDots[a].type = 2
 a += 1
 y += 1
 x += 1

This code is in the gamemaps module

def checkDotPoint(x,y):
 global dotimage
 if dotimage.get_at((int(x), int(y))) ==
Color('black'):
 return 1
 if dotimage.get_at((int(x), int(y))) == Color('red'):
 return 2
 return False

10 I have the power!
The next item on our list is power-ups.

These are large glowing dots that, when eaten,
turn all the flames dark. In their dark form they
can be eaten for bonus points and they return to
the centre of the maze. First, let’s devise a way to
place the power-ups in the maze. We have updated
the pimandotmap.png image to include some red
squares, instead of black, in the positions where we
want our power-ups to be. Then, when we initialise
our dots and call checkDotPoint(x,y), we look for
red as well as black – figure3.py shows how we
change our code to do this.

	� Updated code to
include the creation
of power-ups

TUTORIAL

Pygame Zero: Hungry Pi-Man part 294

eaten, so we need to add more code to handle the
event of a power-up being eaten. In the draw()
function, where we look to see if the player has
collided with a dot using collidepoint(), we then
check the status of the dot (to make sure it’s still
there) and after this we can add a new condition:
if piDots[a].type == 2:.

12 High status flames
As we have determined that we are dealing

with a power-up (type 2), we can add a loop that
goes through the list of flames and changes the
status of the flame. Normally the status for a flame
is 0. What we are going to do is change the status
to a fairly high number (try 1200 to start with). This
will indicate that the flames are in their alternate
state and we will use the status as a countdown.
We will decrement this value each time update() is
called; when it reaches 0, the flames will turn back
to normal.

13 Why so dark?
To make our flame turn dark, we are going

to add some conditions to our drawFlames()
function. We want them to be dark when the status
is more than 0, but just to make it interesting
we will make them flash when they are about
to turn back. So we can write if flames[g].
status > 200 or (flames[g].status > 1 and
flames[g].status%2 == 0): flames[g].image =
"flame"+str(g+1)+"-". What this is saying is that
if the status is over 200 then make the flame dark,
but if it’s less that 200 but greater than 1 then
make it dark every other frame. We then have an
else condition underneath that will set the image
to its normal colour.

from pygame import image, surface, Color
moveimage = image.load('images/pimanmovemap.png')
dotimage = image.load('images/pimandotmap.png')

def checkMovePoint(p):
 global moveimage
 if p.x+p.movex < 0: p.x = p.x+600
 if p.x+p.movex > 600: p.x = p.x-600
 if moveimage.get_at((int(p.x+p.movex), int(p.y+
p.movey-80))) != Color('black'):
 p.movex = p.movey = 0

def checkDotPoint(x,y):
 global dotimage
 if dotimage.get_at((int(x), int(y))) ==
Color('black'):
 return 1
 if dotimage.get_at((int(x), int(y))) ==
Color('red'):
 return 2
 return False

def getPossibleDirection(g):
 global moveimage
 if g.x-20 < 0:
 g.x = g.x+600
 if g.x+20 > 600:
 g.x = g.x-600
 directions = [0,0,0,0]
 if g.x+20 < 600:
 if moveimage.get_at((int(g.x+20),
int(g.y-80))) == Color('black'): directions[0] = 1
 if g.x < 600 and g.x >= 0:
 if moveimage.get_at((int(g.x), int(g.y-60)))
== Color('black'): directions[1] = 1
 if g.x-20 >= 0:
 if moveimage.get_at((int(g.x-20),
int(g.y-80))) == Color('black'): directions[2] = 1
 if g.x < 600 and g.x >= 0:
 if moveimage.get_at((int(g.x), int(g.y-100)))
== Color('black'): directions[3] = 1
 return directions

gamemaps.py

001.
002.
003.
004.
005.
006.
007.
008.
009.

010.
011.
012.
013.
014.

015.
016.

017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.

029.
030.

031.
032.

033.
034.

035.

> Language: Python 3

11 Not all dots are the same
We now have a system to place our power-

ups in the maze. The next thing to do is to change
what happens when Pi-Man eats a power-up
compared to a normal dot. At the moment we
just add ten points to the player’s score if a dot is

	� Pi-Man gets three lives before it's game
over. Change the player.lives = 3
variable in the code to give your player
more (or fewer) lives to play with.

TUTORIAL

95Retro Gaming with Raspberry Pi

14 The tables have turned
Now we have our flames all turning dark

when a power-up is eaten, we need to change what
happens when Pi-Man collides with them. Instead
of taking a life from the player.lives variable, we
are going to add to the player.score variable and
send the flame back to the centre. So, the first job
is to add a condition in update() when we check the
flame collidepoint() with the player, which would
be if flames[g].status > 0:. We then add 100 to
the player.score and animate() the flame back to
the centre. See figure4.py for the updated code.

15 Back to the start
You will notice that when Pi-Man comes

into contact with a dark flame, we just animate
the actor straight back to the centre in the same
time that we normally animate a flame from one
position to the next. This is so that we don’t hold
up the animation on the other flames waiting
for the eaten one to get back to the centre. In the
original game, the flames would turn into a pair of
eyes and then make their way back to the centre
along the corridors, but that would take too much
extra code for this tutorial.

from pygame import joystick, key
from pygame.locals import *

joystick.init()
joystick_count = joystick.get_count()

if(joystick_count > 0):
 joyin = joystick.Joystick(0)
 joyin.init()

def checkInput(p):
 global joyin, joystick_count
 xaxis = yaxis = 0
 if p.status == 0:
 if joystick_count > 0:
 xaxis = joyin.get_axis(0)
 yaxis = joyin.get_axis(1)
 if key.get_pressed()[K_LEFT] or xaxis < -0.8:
 p.angle = 180
 p.movex = -20

 if key.get_pressed()[K_RIGHT] or xaxis > 0.8:
 p.angle = 0
 p.movex = 20
 if key.get_pressed()[K_UP] or yaxis < -0.8:
 p.angle = 90
 p.movey = -20
 if key.get_pressed()[K_DOWN] or yaxis > 0.8:
 p.angle = 270
 p.movey = 20
 if joystick_count > 0:
 jb = joyin.get_button(1)
 else:
 jb = 0
 if p.status == 1:
 if key.get_pressed()[K_RETURN] or jb:
 return 1
 if p.status == 2:
 if key.get_pressed()[K_RETURN] or jb:
 return 1

gameinput.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.

> Language: Python 3

figure4.py
001.
002.
003.
004.
005.

006.
007.
008.

009.
010.
011.
012.
013.
014.

This code is in the update() function

 for g in range(len(flames)):
 if flames[g].status > 0: flames[g].status -= 1
 if flames[g].collidepoint((player.x,
player.y)):
 if flames[g].status > 0:
 player.score += 100
 animate(flames[g], pos=(290, 370),
duration=1/SPEED, tween='linear',
on_finished=flagMoveFlames)
 else:
 player.lives -= 1
 if player.lives == 0:
 player.status = 3
 else:
 player.status = 1

021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.

16 Time for some music
So far in this series, we have not covered

adding music to games. In the documentation of
Pygame Zero, music is labelled as experimental,
so we will just have to try it out and see what

	� Updated flame
collision code to
send them back to
the centre if Pi-Man
eats them

TUTORIAL

Pygame Zero: Hungry Pi-Man part 296

import pgzrun
import gameinput
import gamemaps
from random import randint
from datetime import datetime
WIDTH = 600
HEIGHT = 660

player = Actor("piman_o") # Load in the player Actor image
player.score = 0
player.lives = 3
level = 0
SPEED = 3

def draw(): # Pygame Zero draw function
 global piDots, player
 screen.blit('header', (0, 0))
 screen.blit('colourmap', (0, 80))
 piDotsLeft = 0
 for a in range(len(piDots)):
 if piDots[a].status == 0:
 piDots[a].draw()
 piDotsLeft += 1
 if piDots[a].collidepoint((player.x, player.y)):
 if piDots[a].status == 0:
 if piDots[a].type == 2:
 for g in range(len(flames)): flames[g].status = 1200
 else:
 player.score += 10
 piDots[a].status = 1
 if piDotsLeft == 0: player.status = 2
 drawFlames()
 getPlayerImage()
 player.draw()
 drawLives()
 screen.draw.text("LEVEL "+str(level) , topleft=(10, 10), owidth=0.5,
ocolor=(0,0,255), color=(255,255,0) , fontsize=40)
 screen.draw.text(str(player.score) , topright=(590, 20), owidth=0.5,
ocolor=(255,255,255), color=(0,64,255) , fontsize=60)
 if player.status == 3: drawCentreText("GAME OVER")
 if player.status == 2: drawCentreText(
"LEVEL CLEARED!\nPress Enter or Button A\nto Continue")
 if player.status == 1: drawCentreText(
"CAUGHT!\nPress Enter or Button A\nto Continue")

def drawCentreText(t):
 screen.draw.text(t , center=(300, 434), owidth=0.5,
ocolor=(255,255,255), color=(255,64,0) , fontsize=60)

def update(): # Pygame Zero update function
 global player, moveFlamesFlag, flames

piman2.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.

037.

038.
039.

040.

041.
042.
043.

044.
045.
046.

> Language: Python 3 happens. In the sample GitHub files for this
tutorial, there is a directory called music and
in that directory is an MP3 file that we can use
as eighties arcade game background music.
To start our music, all we need to do is write
music.play("pm1") in our init() function to start
the music/pm1.mp3 file. You may also want to set
the volume with music.set_volume(0.3).

17 More sound effects
The MP3 file will continue playing in a

loop until we stop it, so when the game is over
(player.lives = 0) we can fade the music out with
music.fadeout(3). At this stage we can also add
some sound effects for when Pi-Man is eating dots.
We have a sound in our sounds directory called
pi1.mp3 which we will use for this purpose and we
can add a line of code just before we animate the
player: sounds.pi1.play(). This will play the sound
every time Pi-Man moves. We can do the same
with pi2.mp3 when a life is lost.

18 Level it up
The last thing we need to put into our

game is to allow the player to progress to the next
level when all the dots have been eaten. We could
incorporate several things to make each level
harder, but for the moment let’s concentrate on
resetting the screen and changing the level. If we
define our level variable near the top of our code
as level = 0, then inside our init() function we
say level += 1, then each time we call init() we
will increase our level variable. This means that
instead of saying that the player has won, we just
prompt them to continue, and call init() to reset
everything and level up.

19 So much to do
The Pi-Man game has many more things

that can be added to it. For instance, you could
include bonus fruits to collect, the flames might
move faster as the levels continue, there could be
animations between some of the levels, and the
power-ups might run out quicker. You could add
all of these things to this game, but we will have to
leave you to do that yourself. In the next tutorial,
we’ll be starting a new Pygame Zero game with
isometric 3D graphics.

TUTORIAL

97Retro Gaming with Raspberry Pi

magpi.cc/pgzero7

DOWNLOAD
THE FULL CODE:

 if player.status == 0:
if moveFlamesFlag == 4: moveFlames()
for g in range(len(flames)):

if flames[g].status > 0: flames[g].status -= 1
if flames[g].collidepoint((player.x,

player.y)):
if flames[g].status > 0:

player.score += 100
animate(flames[g], pos=(290, 370),

duration=1/SPEED, tween='linear',
on_finished=flagMoveFlames)

else:
player.lives -= 1
sounds.pi2.play()
if player.lives == 0:

player.status = 3
music.fadeout(3)

else:
player.status = 1

if player.inputActive:
gameinput.checkInput(player)
gamemaps.checkMovePoint(player)
if player.movex or player.movey:

inputLock()
sounds.pi1.play()
animate(player, pos=(player.x + player.

movex, player.y + player.movey), duration=1/SPEED,
tween='linear', on_finished=inputUnLock)
 if player.status == 1:

i = gameinput.checkInput(player)
if i == 1:

player.status = 0
player.x = 290
player.y = 570

 if player.status == 2:
i = gameinput.checkInput(player)
if i == 1:

init()

def init():
 global player, level
 initDots()
 initFlames()
 player.x = 290
 player.y = 570
 player.status = 0
 inputUnLock()
 level += 1
 music.play("pm1")
 music.set_volume(0.2)

def drawLives():
 for l in range(player.lives): screen.blit("piman_o",
(10+(l*32),40))

def getPlayerImage():
 global player
 dt = datetime.now()
 a = player.angle
 tc = dt.microsecond%(500000/SPEED)/(100000/SPEED)
 if tc > 2.5 and (player.movex != 0 or player.movey
!=0):

if a != 180:
player.image = "piman_c"

else:
player.image = "piman_cr"

 else:
if a != 180:

player.image = "piman_o"
else:

player.image = "piman_or"
 player.angle = a

def drawFlames():
 for g in range(len(flames)):

if flames[g].x > player.x:
if flames[g].status > 200 or (flames[g].status

> 1 and flames[g].status%2 == 0):
flames[g].image = "flame"+str(g+1)+"-"

else:
flames[g].image = "flame"+str(g+1)+"r"

else:
if flames[g].status > 200 or (flames[g].status

> 1 and flames[g].status%2 == 0):
flames[g].image = "flame"+str(g+1)+"-"

else:
flames[g].image = "flame"+str(g+1)

flames[g].draw()

def moveFlames():
 global moveFlamesFlag
 dmoves = [(1,0),(0,1),(-1,0),(0,-1)]
 moveFlamesFlag = 0
 for g in range(len(flames)):

dirs = gamemaps.getPossibleDirection(flames[g])
if inTheCentre(flames[g]):

flames[g].dir = 3
else:

if g == 0: followPlayer(g, dirs)
if g == 1: ambushPlayer(g, dirs)

if dirs[flames[g].dir] == 0 or randint(0,50) == 0:

047.
048.
049.
050.
051.

052.
053.
054.

055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.
069.

070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.
086.
087.
088.
089.
090.
091.
092.

093.
094.

095.
096.
097.
098.
099.
100.
101.

102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.

117.
118.
119.
120.
121.

122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.

http://magpi.cc/pgzero7

TUTORIAL

Pygame Zero: Hungry Pi-Man part 298

 d = -1
 while d == -1:
 rd = randint(0,3)
 if aboveCentre(flames[g]) and rd == 1:
 rd = 0
 if dirs[rd] == 1:
 d = rd
 flames[g].dir = d
 animate(flames[g], pos=(flames[g].x
+ dmoves[flames[g].dir][0]*20, flames[g].y +
dmoves[flames[g].dir][1]*20), duration=1/SPEED,
tween='linear', on_finished=flagMoveFlames)

def followPlayer(g, dirs):
 d = flames[g].dir
 if d == 1 or d == 3:
 if player.x > flames[g].x and dirs[0] == 1:
flames[g].dir = 0
 if player.x < flames[g].x and dirs[2] == 1:
flames[g].dir = 2
 if d == 0 or d == 2:
 if player.y > flames[g].y and dirs[1] == 1 and not
aboveCentre(flames[g]): flames[g].dir = 1
 if player.y < flames[g].y and dirs[3] == 1:
flames[g].dir = 3

def ambushPlayer(g, dirs):
 d = flames[g].dir
 if player.movex > 0 and dirs[0] == 1: flames[g].dir = 0
 if player.movex < 0 and dirs[2] == 1: flames[g].dir = 2

 if player.movey > 0 and dirs[1] == 1 and not
aboveCentre(flames[g]): flames[g].dir = 1
 if player.movey < 0 and dirs[3] == 1: flames[g].dir = 3

def inTheCentre(ga):
 if ga.x > 220 and ga.x < 380 and ga.y > 320 and ga.y <
420:
 return True
 return False

def aboveCentre(ga):
 if ga.x > 220 and ga.x < 380 and ga.y > 300 and ga.y <
320:
 return True
 return False

def flagMoveFlames():
 global moveFlamesFlag
 moveFlamesFlag += 1

def flameCollided(ga,gn):
 for g in range(len(flames)):
 if flames[g].colliderect(ga) and g != gn:
 return True
 return False

def initDots():
 global piDots
 piDots = []
 a = x = 0
 while x < 30:
 y = 0
 while y < 29:
 d = gamemaps.checkDotPoint(10+x*20, 10+y*20)
 if d == 1:
 piDots.append(Actor("dot",(10+x*20,
90+y*20)))
 piDots[a].status = 0
 piDots[a].type = 1
 a += 1
 if d == 2:
 piDots.append(Actor("power",(10+x*20,
90+y*20)))
 piDots[a].status = 0
 piDots[a].type = 2
 a += 1
 y += 1
 x += 1

def initFlames():
 global flames, moveFlamesFlag
 moveFlamesFlag = 4
 flames = []
 g = 0
 while g < 4:
 flames.append(Actor("flame"+str(g+1),(270+(g*20),
370)))
 flames[g].dir = randint(0, 3)
 flames[g].status = 0
 g += 1

def inputLock():
 global player
 player.inputActive = False

def inputUnLock():
 global player
 player.movex = player.movey = 0
 player.inputActive = True

init()
pgzrun.go()

140.
141.
142.
143.
144.
145.
146.
147.
148.

149.
150.
151.
152.
153.

154.

155.
156.

157.

158.
159.
160.
161.
162.
163.
164.
165.

166.
167.
168.
169.

170.
171.
172.
173.
174.

175.
176.
177.
178.
179.
180.
181.

182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.

198.
199.
200.
201.
202.

203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.

216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.

116-page guide shows you
how to master Raspberry Pi

in easy steps:

 Set up your Raspberry Pi 3A+ for
the first time

 Discover amazing software built
for creative learning

 Learn how to program in Scratch
and Python

 Control electronics: buttons,
lights, and sensors

RASPBERRY PIWITH

GET
STARTED

This isn’t just a book about a computer:
it’s a book with a computer. Almost

everything you need to get started with
Raspberry Pi is inside this kit, including
a Raspberry Pi 3A+ computer, an official
case, and a 16GB NOOBS memory card
for the operating system and storage.

Available
now magpi.cc/store

http://magpi.cc/store

TUTORIAL

Pygame Zero: AmazeBalls isometric game100

Pygame Zero in 3D. Yes it’s possible and we will show
you how in this three-part maze game tutorial

I n this series so far, we have learnt how to
use Pygame Zero to quickly create games.
In this three-part tutorial, we will use several

more new techniques to create a 3D maze game.
The style of 3D graphics we’ll be using is called
isometric. That means that our display will be
made of regular cubes that have a slightly false
perspective because the display is actually made
of 2D images. This technique was used in many
eighties games such as Knight Lore, Alien 8, and
my own series, ArcVenture. In this first part, we’ll
build the basic map using data lists, and create
a bouncing ball character for the player to move
around the maze.

01 Welcome to the third dimension
Pygame Zero was not written with 3D games

in mind, but sometimes you just have to push the
boundaries a little and see how far you can take an
idea. This method of drawing a game area is not
strictly speaking a 3D display, but it does look 3D
and we can do a lot with this technique. We are
going to make a map from list data and build it up
out of cubes. We will then put a bouncing ball into

Pygame Zero
AmazeBalls
isometric game

> � �Raspbian

> � �An image
manipulation
program such as
GIMP, or images
available from
magpi.cc/pgzero8

> � �The latest version
of Pygame Zero

> � �Your brain switched
to maths mode

You’ll Need

The ball starts at one side of the maze and
the player must guide it to the other side

Walls of the maze created
by drawing cubes

Player is represented
as a bouncing ball

the game area for the player to move around using
the keyboard. We’ll start the ball at one side of the
maze and when the player guides it to the other
side, the game is complete.

02 Map-making
As usual in this series, we start with

importing our pgzrun module and don’t forget

Pa
rt

 0
8

TUTORIAL

101Retro Gaming with Raspberry Pi

to call pgzrun.go() right at the end of the code.
The default window size should suit our purposes.
We are going to make a two-dimensional list of
numbers that will represent our map. Each number
will represent one square on the map and we will
make our map twelve squares wide and twelve
squares high. See figure1.py to see how we define
this list, which we will call mapData. You will also
see another variable called mapInfo that defines
the width and height of our map in a structure
called a dictionary.

03 A is for aardvark
A dictionary in Python is a very useful data

structure. Rather than just storing a list of values
or strings, we can give each of these values a label.
Looking at our mapInfo dictionary, we can see that
there are two values declared; the first has the label
‘width’ and the second ‘height’. To read the values
back, we just need to write mapInfo["width"],
which would give us the value 12 in this case.
Dictionaries are a very useful structure to gather
together several variables that are all associated and
can be referred to by their labels.

04 Mapping the map
Now that we have some data for our map,

we need to define some images that are going
to be used to draw the map. We can make a
new list of map blocks by writing mapBlocks =
["map1c","map2c"]. What this will do is define
that when we see a 0 in the mapData list, it means
draw the first image in the list, which is map1c.
If we see a 1 in the data, then use image map2c.
For the moment, we’ll just stick to two different
map blocks. The first will represent the floor; the
second, the walls.

05 Show me the map
Next is to get our map data translated into

a visual map we can see on the screen. We’ll set up
the basics in our Pygame Zero draw() function and
then call a drawMap() function that we’ll write to
do the work. In figure2.py, you’ll see that we fill
the screen with black first, then draw our map. The
drawMap() function, although short, may look a bit
complicated, so let’s go through it slowly as you’ll
need to understand what is happening here.

Pygame Zero
AmazeBalls
isometric game

	�The blocks build back to
front, one row at a time to
produce the 3D effect

	�Our basic Pygame Zero
framework and our map
data definitions

import pgzrun

mapData = [[1,1,1,0,1,1,1,1,1,1,1,1],
[1,0,0,0,0,0,0,0,0,0,0,1],
[1,1,1,1,1,1,1,0,1,1,1,1],
[1,0,0,0,0,0,0,0,0,0,0,1],
[1,1,1,1,1,1,1,1,0,0,0,1],
[1,0,0,0,0,0,0,1,0,1,1,1],
[1,0,1,0,1,1,0,1,0,0,0,1],
[1,0,1,0,1,0,0,1,1,1,0,1],
[1,0,1,0,1,0,0,0,0,0,0,1],
[1,1,1,0,1,1,1,1,1,1,1,1],
[1,0,0,0,0,0,0,0,0,0,0,1],
[1,1,1,1,1,1,1,1,0,1,1,1]]

mapInfo = {"width":12, "height":12}

pgzrun.go()

figure1.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.

> Language: Python magpi.cc/pgzero8

DOWNLOAD
THE FULL CODE:

http://magpi.cc/pgzero8

TUTORIAL

Pygame Zero: AmazeBalls isometric game102

06 Building blocks
We are going to use a nested loop to run

through our data and display the map. The first
loop is for the x direction and inside that we have
another loop for the y direction. The x and y in this
case do not refer to screen pixel coordinates but to
the data blocks. Now imagine that we are going to
turn our data 45 degrees so that we draw our blocks
diagonally down the screen. We do this with a bit of
maths to translate the x and y positions in our data
to locations on the screen.

07 An amazing view
To draw each block, we use the Pygame Zero

screen.blit() function, which loads an image and
draws it at the specified coordinates on the screen.
So the first parameter of this function is the name

	� The nuts and bolts of the
map drawing functions

	� This map technique was
used with several 8-bit
games and was still being
used for the early versions
of Sim City and Age
of Empires

OFFSETX = 368
OFFSETY = 200
mapBlocks = ["map1c","map2c"]
mapHeight = [0,32]

def draw(): # Pygame Zero draw function
 screen.fill((0, 0, 0))
 drawMap()

def drawMap():
 for x in range(0, 12):
 for y in range(0, 12):
 screen.blit(mapBlocks[mapData[x][y]], ((x*32)-
(y*32)+OFFSETX,
 (y*16)+(x*16)+OFFSETY -
mapHeight[mapData[x][y]]))

figure2.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.

014.

015.

TUTORIAL

103Retro Gaming with Raspberry Pi

of the image. We obtain this by getting the value
from mapData[x][y] and use mapBlocks to give
us an image name. Now we calculate the screen
coordinates. The width of each block is 64 pixels,
but because we are printing diagonally we only
want to move 32 pixels sideways for each block so
that they overlap each other. In the down direction
we move 16 pixels for each block.

08 Diamonds are forever
To get our screen x coordinate, we multiply

the data x value by 32 and subtract that from
the data y value times 32. That gives us a screen
x coordinate starting from 0. We then add a
predefined offset to move the starting block to the
middle of the screen. We do the same to get the
screen y coordinate but use a multiplier of 16 for
the data x and y, add an offset to move the start
block down the screen a bit, and take into account
that some blocks are taller than others using
mapHeight. When this runs, we’ll see twelve rows
and twelve columns drawn in a diamond shape.

09 Balls
Now it’s time to make our player character,

which in this case will be represented by a
bouncing ball. We’ll start by getting the ball
positioned and moving around the map first. We’ll
make a dictionary to hold all the data we need to
know about the player. See figure3.py for how
we define the player data. The x and y values are
where the player is in the block data map. We will
start the player in column(x) 0 and row(y) 3. The
frame value will tell us which frame of animation
to show. The sx and sy values are the actual screen
coordinates where the ball will be drawn.

10 Blitting the player
Leaving aside the other values in our player

dictionary for the moment, the other piece of code
in figure3.py goes inside our drawMap() loops just

after we blit the blocks. The code says “if the block
we are currently dealing with is the block that the
player is on, work out the screen coordinates (using
the same calculation as the blocks) and draw the
ball to the screen.” We only work out the screen
coordinates of the ball once, as we’ll now make
a doMove() function that will handle the player
screen coordinates from here.

11 On the move
Our doMove() function will introduce a

couple of new Python techniques and some more
of the player dictionary data. We pass doMove()
three parameters. The first is the player dictionary
structure (so we can read and write player values),
and then the x and y change we want to make
in block units. The x and y will be 0, 1 or -1 and
represent a movement in our map block data.
The first bit of doMove() will check to make sure
that the block we are moving to is within the
bounds of our map. This is a shorthand way of
comparing several values and in simple terms is
0 <= x < width, which means x needs to be between
0 and width minus 1. See figure4.py for the actual
code to use.

Top Tip
Data
formatting

If you are using
hand-coded data,
it’s a good idea
to format it in a
way you can read
it easily.

	� Defining the player
data structure and
drawing the player
character to
the screen

 �We’ll make a dictionary to
hold all the data we need
to know about the player

This code is near the top of our program

player = {"x":0, "y":3, "frame":0, "sx":0, "sy":0,
 "moveX":0, "moveY":0, "queueX":0, "queueY":0,
 "moveDone":True, "movingNow":False,
"animCounter":0}

This code goes in the drawMap() function inside the y loop

 if x == player["x"] and y == player["y"]:
 if player["sx"] == 0:
 player["sx"] = (x*32)-(y*32)+OFFSETX
 player["sy"] = (y*16)+(x*16)+OFFSETY-32
 screen.blit("ball"+str(player["frame"]),
(player["sx"], player["sy"]))

figure3.py
001.
002.
003.
004.
005.

006.
007.
008.
009.
010.
011.
012.
013.
014.

015.
016.

TUTORIAL

Pygame Zero: AmazeBalls isometric game104

12 Watch your step
After we have checked the player movement

will be inside the map area, we can test to see if
the movement will be to a floor block (value 0
in our data). We just need to check the value in
mapData and we are good to go. The next line of
code is a clever way of changing several values in
a dictionary. We use the dictionary p.update()
function to set queueX, queueY, and moveDone
values all at the same time. The reason we are
queueing the movement rather than just moving is
because we may already be moving and we want to
wait until the end of the previous move.

13 The update
Staying with figure4.py, we can see how

to get our movement controls from the keyboard.
In the Pygame Zero function update() we look
for the cursor keys being pressed and if so, call
our doMove() function with suitable movement
parameters. When we have checked for movement,
we then call a function updateBall() which will
do all the heavy lifting of animating the ball and
moving it from one block to the next. You will

notice that before we check the keyboard, we make
sure that we are ready for more input by checking
the player dictionary value moveDone, which we set
to False in doMove().

14 Sequencing the animation
All we have left to do now is get the ball

to move from one block to the next, but if we get
things in the wrong sequence we can end up with
the ball being drawn in front of blocks that it is
meant to be behind, or behind blocks that it should
be in front of. At this stage we can bring in the
changing frames of the animation to make the ball
bounce up and down. We also want to make the
ball move smoothly from one place to another, so
the smaller the movement from one draw() to the
next, the better.

15 You’ve been framed
Let’s start with the animation frames for

the bouncing ball. We have eight frames named
ball0.png up to ball7.png. If we just increase the
frame value in our player dictionary each time we
call updateBall() and when we get to 8 set the
value back to 0, our drawMap() function will take
care of drawing the animation in a loop. The only
problem with this is that if we run the animation
at this speed, the ball is bouncing very fast so we
need to slow it down. For this we use another value
from our player dictionary, animCounter. With
this value, we count every four frames and on the
fourth frame we add one to the frame value.

16 Frame by frame
We need to time the movement of the ball

with the correct frames so that it looks like it’s

Top Tip
Dictionaries

Organising data
in dictionaries
makes it easier
to understand
what the data
is used for. It’s
also a good
stepping stone
towards using
object-oriented
programming
(OOP)

	� Getting keyboard
input and responding
by setting up the
data for moving the
player character

def update(): # Pygame Zero update function
 global player
 if player["moveDone"] == True:
 if keyboard.left:
 doMove(player, -1, 0)
 if keyboard.right:
 doMove(player, 1, 0)
 if keyboard.up:
 doMove(player, 0, -1)
 if keyboard.down:
 doMove(player, 0, 1)
 updateBall(player)

def doMove(p, x, y):
 if 0 <= (p["x"]+x) < mapInfo["width"] and 0 <=
(p["y"]+y) < mapInfo["height"]:
 if mapData[p["x"]+x][p["y"]+y] == 0:
 p.update({"queueX":x, "queueY":y,
"moveDone":False})

figure4.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.

016.
017

018.
 �The reason we are
queueing the movement
rather than just moving is
because we may already
be moving

TUTORIAL

105Retro Gaming with Raspberry Pi

bouncing smoothly while moving. We want to
wait until frame = 4 before starting the move. At
that point we move our queueX and queueY values
into moveX and moveY, and set movingNow to True.
When movingNow is True, the sx and sy values of
the player are changed. For each block, we need to
move 32 pixels left or right in 1 pixel increments,
and 16 pixels up or down in 0.5 pixel increments.
So our move will take 32 update cycles.

17 One block to the next
For our moving ball to be displayed

correctly in the drawing order of the map, we
need to change the block it is located at on the
correct frame of the animation. When frame = 7
is the time to change, so at that point we update
the player dictionary x and y values based on the
moveX and moveY values. We then set the player
moveDone value to True. This will mean that when
we return to frame = 4, we can clear moveX and
moveY, and set movingNow to False unless another
move has been queued.

18 Wrapping it up
You can see from figure5.py how this

frame sequencing works in the updateBall()
function. You will see the check for movingNow first
and use a separate function, moveP(), to change
the screen coordinates of the player. Then we do all
the logic around sequencing actions to the current
frame. You’ll also see a check to see if the maze has
been solved. We set a global variable, mazeSolved,
to False at the start and if the player arrives at
block 11, 8 we set the variable to True and display a
suitable message in draw().

19 Level one complete
So that’s the first part of this tutorial. We

have looked at creating a 3D-looking map from
data and 2D images, and how to move an animated
character around the map. This game format has
a lot of possibilities and in the next episode we’ll
look at making the map larger, editing the map
data in an external editor, and loading the data
from a separate file.

def updateBall(p):
 global mazeSolved
 if p["movingNow"]:
 if p["moveX"] == -1: moveP(p,-1,-0.5)
 if p["moveX"] == 1: moveP(p,1,0.5)
 if p["moveY"] == -1: moveP(p,1,-0.5)
 if p["moveY"] == 1: moveP(p,-1,0.5)
 p["animCounter"] += 1
 if p["animCounter"] == 4:
 p["animCounter"] = 0
 p["frame"] += 1
 if p["frame"] > 7:
 p["frame"] = 0
 if p["frame"] == 4:
 if p["moveDone"] == False:
 if p["queueX"] != 0 or p["queueY"] !=0:
 p.update({"moveX":p["queueX"],
"moveY":p["queueY"], "queueX":0, "queueY":0,
"movingNow": True})
 else:
 p.update({"moveX":0, "moveY":0,
"movingNow":False})
 if p["x"] == 11 and p["y"] == 8:
 mazeSolved = True

 if p["frame"] == 7 and p["moveDone"] == False and
p["movingNow"] == True:
 p["x"] += p["moveX"]
 p["y"] += p["moveY"]
 p["moveDone"] = True

figure5.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.

018.
019.

020.
021.
022.
023.

024.
025.
026.

TUTORIAL

Pygame Zero: AmazeBalls part 2106

Pygame Zero in 3D. Let’s make the map bigger in part
two of this three-part tutorial

I n this second part of our tutorial on using
Pygame Zero to create a 3D isometric game,
we will start from where we left off in the

last part and look at ways to make our 3D area
larger and easier to edit. This will mean using a
map editor called Tiled, which is free to download
and use, to make your own 3D maps. We’ll
learn how to create a simple map and export it
from Tiled in a data format called JSON. We will
then import it into our game and code our draw
function to scroll around the map area when the
player moves. Lots to do, so let’s get started.

01 Tools for the job
In the previous part of this tutorial, we

made our map data by writing a two-dimensional
list of zeroes and ones which represented either a
floor block or a wall block. The player was able to
move onto any block that was a zero in the data.
This time we are going to get a map-editing app
to do the work for us instead of typing the data
in. First, we need to get Tiled installed. You can
find the Tiled homepage at mapeditor.org, where
options are given to support the developer if you
like what they are creating.

02 Getting Tiled
Tiled can be used on many different

systems, including PCs and Mac computers. Also,
more importantly for us, it works really well on
Raspbian and Raspberry Pi. It’s also super-easy to
install. All you need to do is open up a Terminal
window, then make sure you’re online and are
up-to-date by typing sudo apt-get update. You

Pygame Zero
AmazeBalls: part 2

You’ll Need

> � �Raspbian

> � �Tiled (free map
editor)
mapeditor.org

> � �An image
manipulation
program such as
GIMP, or images
available from
magpi.cc/pgzero9

> � �The latest version
of Pygame Zero

Pa
rt

 0
9

may need to type sudo apt-get upgrade too,
depending on how long you’ve left your Pi without
updates. When those have run, just type sudo apt-
get install tiled, hit RETURN, and you should
see Tiled being installed. When it’s done, a new
Tiled icon will appear in your Graphics submenu.

03 Cartography
Previously our map was 12 blocks by 12,

which all fitted on the screen at once. With our map
editor we can make a much bigger map. It could be
huge, but for the moment let’s stick to a grid of 30
by 30 blocks. You may want to download our ready-
made map and blocks from magpi.cc/pgzero9. If
you load in the map, you should see a blue and red
maze, a bit like in part one but much bigger. This
time, though, we have added a new block to indicate
the finish point in the maze. You should be able to
scroll around to see the whole map.

04 Exporting the data
Have a play around with the map editor;

there is some great documentation on the website.
When you have familiarised yourself with how it
works, we can think about the task of getting the
map data into our game. To export the data, go to
Export in the File menu and when the dialogue
box opens up, asking ‘export as…’, find a suitable
place (perhaps a subdirectory called maps) to
save the map (perhaps as map1), but in the drop-
down labelled ‘Save as type’, select ‘Json map files
(*.json)’. This type of file (pronounced ‘Jay-son’,
short for JavaScript Object Notation) can be viewed
in a text editor.

http://mapeditor.org
http://mapeditor.org
http://magpi.cc/fPBrhM
http://magpi.cc/fPBrhM

TUTORIAL

107Retro Gaming with Raspberry Pi

05 JSON and the Argonauts
If we open the JSON file, we will see a load of

curly and square brackets with words and numbers
spread all over the place, but before you proclaim
‘It’s all Greek to me!’, let’s have a look at some
of the elements so that we can understand the
structure of the data. If you are familiar with the
JavaScript language, you’ll recognise that the curly
brackets { and } are used to contain blocks of code
or data, and square brackets [and] are used for
lists of data. Look at the element called ‘layers’ and
you will see data describing our map.

06 Loading the data
For this game we don’t actually need all

the data that is in the JSON file, but we can load
it all in and just use the bits we need. Let’s make

import json
import os

def loadmap(mp):
 with open(mp) as json_data:
 d = json.load(json_data)
 mapdata = {"width":d["width"], "height":d["height"]}
 rawdata = d["layers"][0]["data"]
 mapdata["data"] = []
 for x in range(0, mapdata["width"]):
 st = x*mapdata["width"]
 mapdata["data"].append(
rawdata[st:st+mapdata["height"]])

 tileset = "maps/" + d["tilesets"][0]["source"].replace(
".tsx",".json")
 with open(tileset) as json_data:
 t = json.load(json_data)

 mapdata["tiles"] = t["tiles"]
 for tile in range(0,len(mapdata["tiles"])):
 path = mapdata["tiles"][tile]["image"]
 mapdata["tiles"][tile]["image"] =
os.path.basename(path)
 mapdata["tiles"][tile]["id"] =
mapdata["tiles"][tile]["id"]+1
 return mapdata

figure1.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.

013.
014.

015.
016.
017.
018.
019.
020.
021.

022.

023.

An external editor is used
to create the maze

The player must complete
the maze in the fastest
time possible

The maze is bigger than the
game window and scrolls
around with the player

	� The loadMap()
function translates
the data from
Tiled into our map
data format

	� When we have rewritten our drawMap() function, we will see
some jagged edges around the extremities of the drawing area

TUTORIAL

Pygame Zero: AmazeBalls part 2108

Top Tip
Looking at
JSON

You can look at
JSON files in any
text editor, but
a programming
one is probably
best – perhaps
try Geany.

	� Figure 2 The
coordinates that
the map starts from
are calculated as
an offset from the
player, and the
maze blocks are
only drawn inside
the rectangle of the
game window

	� We have added
a new tile for the
finish. When the
player moves onto
this block, the maze
is solved

a new module to deal with map handling, like we
have done in previous tutorials (see Hungry Pi-
Man on page 82). Let’s make a new module called
map3d.py. Python provides a module to import
JSON files, so we can write import json at the top
of our map3d.py file to load the module. We’ll also
need to use the os module for handling file paths,
so import that too. Then we just need to write a
function to load our map.

07 Getting what we need
Let’s make a function called loadmap()

and use a parameter called mp to pass a file location
to the function. Have a look at figure1.py to see
how we write this. You can see that we load in
our map data into a variable d using the function
json.load(). Then we can copy the width and

height into a dictionary called mapdata. This
dictionary will hold all the data we need by the
time we get to the end of the function. Having
made a temporary copy of the block data (rawdata),
we can then loop through the values and put them
in the format we want in mapdata.

08 The tileset connection
One bit of information that we need is

where to find the details about which images to
use on each block. This is included as a value called
‘tilesets’. In this case we will assume that we only
have one tileset defined, so we can read it in and go
and find our block images. Except there is a slight
crinkle in the plan. Our map data refers to the
tileset file as a .tsx file. What we need to do is go
back to Tiled and export our tileset from the tileset
editor as a JSON file. Then, when we import it, we
just switch the .tsx extension for .json.

09 A night on the tiles
Once we have loaded in our tileset data as

a JSON file, we can then loop through the tiles
and get the names of each of our block images.
You will note that we add one to the id value to
match the values that Tiled has exported. When
we have all that data in our mapdata dictionary,
we can pass that back to our main program by
writing return mapdata. Going back to our main

TUTORIAL

109Retro Gaming with Raspberry Pi

program, we’ll need to add an import for our
map3d module at the top of the code and then,
before our draw() function, we can write mapData
= map3d.loadmap("maps/map1.json") instead of
our list of zeroes and ones.

10 Thinking big
In part one of this tutorial, our maze was

12×12 blocks, which just fitted nicely into the game
area. Now we have a 30×30 maze which, if we draw
it all, will go off the sides of the game window. We
need to be able to scroll the map around the screen
as the player moves through the maze. The way
we can do this is to keep the bouncing ball in the
centre of the game area and, as the player moves,
scroll the map. So, in effect, what we are saying is
that we are going to draw the map relative to the
player rather than relative to the game window.

11 It’s all relative
To draw our map, we are going to use the

same basic loops (x and y) as before, but we will
start drawing our map based on the coordinates
we calculated for the player screen x and y
coordinates. With that starting screen position,
we loop in a range that is either side of the player
in both directions. See Figure 2 for a visual
explanation of what we are doing in these loops. In
simple terms, what we are saying is: ‘Start drawing
the map from coordinates that will make the player
appear in the centre of the window. Then only
draw the blocks that are visible in the window.’ See
figure3.py for how we have changed the drawMap()
function to do this.

12 Extra functions
You will see in figure3.py that we have a

couple of new functions that we have not defined
yet. The first is onMap(), which we pass an x and
a y coordinate to. These are block locations which
we test to make sure that the coordinates we are
asking for are actually on our map, otherwise we
will get an error. If the x or y are less than 0 or
greater than the width (or height) of the map, then
we can ignore it. The other function is findData().
This function finds the data associated with a tile
of a given id. Look at figure4.py (overleaf) to see
how these functions are written.

	� The updated drawMap() function

def drawMap():
 psx = OFFSETX
 psy = OFFSETY-32
 mx = psx - player["sx"]
 my = psy - player["sy"]+32

 for x in range(player["x"]-12, player["x"]+16):
 for y in range(player["y"]-12, player["y"]+16):
 if onMap(x,y):
 b = mapData["data"][y][x]
 td = findData(mapData["tiles"], "id", b)
 block = td["image"]
 bheight = td["imageheight"]-34
 bx = (x*32)-(y*32) + mx
 by = (y*16)+(x*16) + my
 if -32 <= bx < 800 and 100 <= by < 620:
 screen.blit(block, (bx, by - bheight))
 if x == player["x"] and y == player["y"]:
 screen.blit("ball"+str(player["frame"]),
(psx, psy))

figure3.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.

3dmap module for AmazeBalls
import json
import os

def loadmap(mp):
 with open(mp) as json_data:
 d = json.load(json_data)
 mapdata = {"width":d["width"], "height":d["height"]}
 rawdata = d["layers"][0]["data"]
 mapdata["data"] = []
 for x in range(0, mapdata["width"]):
 st = x*mapdata["width"]
 mapdata["data"].append(rawdata[st:st+mapdata["height"]])

 tileset = "maps/" + d["tilesets"][0]["source"].replace(
".tsx",".json")
 with open(tileset) as json_data:
 t = json.load(json_data)

 mapdata["tiles"] = t["tiles"]
 for tile in range(0,len(mapdata["tiles"])):
 path = mapdata["tiles"][tile]["image"]
 mapdata["tiles"][tile]["image"] = os.path.basename(path)
 mapdata["tiles"][tile]["id"] = mapdata["tiles"][tile]["id"]+1
 return mapdata

map3d.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.

016.
017.
018.
019.
020.
021.
022.
023.
024.

> Language: Python

TUTORIAL

Pygame Zero: AmazeBalls part 2110

16 Over the finish line
If we try to move onto the finish block, we

won’t be able to, as our doMove() function is only
detecting blocks we can move to as id 1. So we need
to add another condition. Instead of only testing
mt for 1, let’s make that line if mt == 1 or mt == 3:
(because the id of the finish tile is 3). We can then
add a variable to set if the player moves onto the
finish, by adding inside this condition: if mt ==
3: mazeSolved = True. We’ll also need to declare
mazeSolved as global inside doMove() and set its
initial value to False at the top of our program.

17 Time is running out
Let’s add a timer to the game. When the

player reaches the finish (mazeSolved is True),
we can stop the timer and display a message.
So, first we make a timer variable at the top of
our program with timer = 0 and then, right at
the end of the code, just before pgzrun.go(), we
can use the Pygame Zero clock function called
schedule_interval(). If we write clock.schedule_
interval(timerTick, 1.0), then the function
timerTick() will be called once every second.

18 The clock struck one
So, all we need to do now is define the

timerTick() function. We’ll need to check if
mazeSolved is False and add 1 to our timer variable
if it is. Then we can add a screen.draw.text line
to our draw() function to display the timer value
and if mazeSolved is True, we can add some more
text to say the maze has been solved and how many
seconds it took. See the full program listing for
how to write the code for those bits.

In the next instalment, we are going to add
some baddies to contend with and, just for good
measure, we can throw in some dynamite!

13 Masking the edges
If we draw our map now, we have lost that

nice diamond shape map. And if we move the player
down the map, we get a jagged edge at the top and
blocks popping in and out of view as our drawMap()
function decides which ones to draw in the range. We
can tidy this up by overlaying a frame that obscures
the edges of the printed area. We do this by having
an image which covers the whole window but has
a transparent cut-out area where we want the map
blocks to be shown. We blit this frame graphic after
we have called drawMap() in our draw() function.

14 I can’t move!
Now that we have our map drawing, if you

are adding in code following on from part one, you
may notice that we can’t move the bouncing ball
any more. That’s because the data we have loaded
is a slightly different format and has floor blocks
as id 1 and walls as id 2, so at the moment our
doMove() function is thinking we are surrounded by
walls (which were id 1 in the last part). We need to
change our doMove() function to accommodate the
new data format. Have a look at figure5.py to see
what we need to write.

15 Finding the exit
Now that we have tidied up our display and

got our ball moving again, we’ll need to change a few
of the default values that we start with. In the last
part, we had the player starting at x = 0 and y = 3.
We will need to change those values to 3 and 3 in
the player data at the top of the code to be suitable
for this map. We’ll also want to change the OFFSETY
constant to 300 to move the map a little further
down the screen. We should now be able to guide the
bouncing ball around the maze towards the bottom
of the screen, where we should find the finish tile.

	� The updated doMove() function

	� The functions to
test if a coordinate
is inside the map
area – onMap() – and
findData(), which
finds tile data for
map drawing

def onMap(x,y):
 if 0 <= x < mapData["width"] and 0 <= y < mapData["height"]:
 return True
 return False

def findData(lst, key, value):
 for i, dic in enumerate(lst):
 if dic[key] == value:
 return dic
 return -1

figure4.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.

def doMove(p, x, y):
 if onMap(p["x"]+x, p["y"]+y):
 mt =
mapData["data"][p["y"]+y][p["x"]+x]
 if mt == 1:
 p.update({"queueX":x,
"queueY":y, "moveDone":False})
 if mt == 3:
 mazeSolved = True

figure5.py
001.
002.
003.

004.
005.

006.
007.

Top Tip
Drawing order

Remember that
in the draw()
function, things
are drawn in the
order you call
them, so always
draw the things
you want on
top last.

TUTORIAL

111Retro Gaming with Raspberry Pi

import pgzrun
import map3d

player = {"x":3, "y":3, "frame":0, "sx":0, "sy":96,
"moveX":0, "moveY":0, "queueX":0, "queueY":0,
"moveDone":True, "movingNow":False,

"animCounter":0}
OFFSETX = 368
OFFSETY = 300
timer = 0
mazeSolved = False

mapData = map3d.loadmap("maps/map1.json")

def draw(): # Pygame Zero draw function
 screen.fill((0, 0, 0))
 drawMap()
 screen.blit(‘title’, (0, 0))
 screen.draw.text("TIME: "+str(timer) , topleft=(
20, 80), owidth=0.5, ocolor=(255,255,0),
color=(255,0,0) , fontsize=60)
 if mazeSolved:

screen.draw.text("MAZE SOLVED in " + str(timer)
+ " seconds!" , center=(400, 450), owidth=0.5,
ocolor=(0,0,0), color=(0,255,0) , fontsize=60)

def update(): # Pygame Zero update function
 global player, timer
 if player["moveDone"] == True:

if keyboard.left: doMove(player, -1, 0)
if keyboard.right: doMove(player, 1, 0)
if keyboard.up: doMove(player, 0, -1)
if keyboard.down: doMove(player, 0, 1)

 updateBall(player)

def timerTick():
 global timer
 if not mazeSolved:

timer += 1

def drawMap():
 psx = OFFSETX
 psy = OFFSETY-32
 mx = psx - player["sx"]
 my = psy - player["sy"]+32

 for x in range(player["x"]-12, player["x"]+16):
for y in range(player["y"]-12, player["y"]+16):

if onMap(x,y):
b = mapData["data"][y][x]
 td = findData(mapData["tiles"], "id", b)
block = td["image"]
bheight = td["imageheight"]-34
bx = (x*32)-(y*32) + mx
by = (y*16)+(x*16) + my
if -32 <= bx < 800 and 100 <= by < 620:

screen.blit(block, (bx, by -
bheight))

if x == player["x"] and y ==

player["y"]:
screen.blit(

"ball"+str(player["frame"]), (psx, psy))

def findData(lst, key, value):
 for i, dic in enumerate(lst):

if dic[key] == value:
return dic

 return -1

def onMap(x,y):
 if 0 <= x < mapData["width"] and 0 <= y <
mapData["height"]:

return True
 return False

def doMove(p, x, y):
 global mazeSolved
 if onMap(p["x"]+x, p["y"]+y):

mt = mapData["data"][p["y"]+y][p["x"]+x]
if mt == 1 or mt == 3:

p.update({"queueX":x, "queueY":y,
"moveDone":False})

if mt == 3:
mazeSolved = True

def updateBall(p):
 if p["movingNow"]:

if p["moveX"] == -1: moveP(p,-1,-0.5)
if p["moveX"] == 1: moveP(p,1,0.5)
if p["moveY"] == -1: moveP(p,1,-0.5)
if p["moveY"] == 1: moveP(p,-1,0.5)

 p["animCounter"] += 1
 if p["animCounter"] == 4:

p["animCounter"] = 0
p["frame"] += 1
if p["frame"] > 7:

p["frame"] = 0
if p["frame"] == 4:

if p["moveDone"] == False:
if p["queueX"] != 0 or p["queueY"] !=0:

p.update({"moveX":p["queueX"],
"moveY":p["queueY"], "queueX":0, "queueY":0,
"movingNow": True})

else:
p.update({"moveDone":True, "moveX":0,

"moveY":0, "movingNow":False})

if p["frame"] == 7 and p["moveDone"] == False
and p["movingNow"] == True:

p["x"] += p["moveX"]
p["y"] += p["moveY"]
p["moveDone"] = True

def moveP(p,x,y):
 p["sx"] += x
 p["sy"] += y

clock.schedule_interval(timerTick, 1.0)
pgzrun.go()

amazeballs2.py

001.
002.
003.
004.
005.
006.

007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.

019.
020.

021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.
040.
041.
042.
043.
044.
045.
046.
047.
048.
049.
050.
051.
052.
053.

054.

055.

056.
057.
058.
059.
060.
061.
062.
063.
064.

065.
066.
067.
068.
069.
070.
071.
072.
073.

074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.
086.
087.
088.
089.
090.
091.
092.

093.
094

095.
096.

097.
098.
099.
100.
101.
102.
103.
104.
105.
106.

> Language: Python magpi.cc/pgzero9

DOWNLOAD
THE FULL CODE:

http://magpi.cc/pgzero9

TUTORIAL

Pygame Zero: AmazeBalls part 3112

03 Common update code
We can use exactly the same updateBall()

function as we do for the player, and that will
deal with all the animation and movement of
the enemy from one block to the next. All we
need to do is add another call to updateBall()
after the one we have in our Pygame Zero
update() function. But this time, rather than
passing the player dictionary to the function,
we pass the enemy1 dictionary by writing
updateBall(enemy1). This means that if we set
our enemy ball moving, all the changes to the data
will be done in the same way as the player ball.

04 Drawing the enemy
Although we now have a way to update the

animation of our enemy ball, we also need to write
some code to draw it on the screen. This needs to
be a bit different than the player ball because the
enemy ball needs to move as the map is scrolled.
We have to use both the map position and the sx
and sy values of the ball to work out where it needs
to be drawn. See figure1.py for the updates to the
drawMap() function. You will see we are calculating
the block position (bx and by) and then adding the
sx and sy values.

05 Enemy brains
If we run our program now, we should see

an enemy ball bouncing away in the middle of
the maze. You’ll notice that both balls bounce at
exactly the same time – if you wanted to have the
bounces non-synchronised, you could change the

Pygame Zero in 3D. Let’s make some baddies and
dynamite in this last part of the series

W e’ll start from where we left off in the
last part and add some extra elements
to make a more challenging game.

We’re going to add some baddie balls that roam
around the maze, pushing walls about – so even
if you know how to get to the finish, you may
find your path is blocked. To give our player an
antidote to being blocked in, we’ll add some
dynamite for them to pick up and use.

01 Changing colours
Previously we had our ball bouncing around

the maze by moving the drawing position of
the map so that we are always viewing the area
around the ball. Now we’ll add some more balls,
but these will be working against the player so we
need to make them a different colour. We can do
this quite easily with a paint app like GIMP. Just
load each frame and use a tool called ‘colorize‘ (in
the Colors menu in GIMP). Make sure you save the
frames as a different name; for example, put an
‘e’ for enemy in front of each file name.

02 Recycling code
We already have one ball bouncing around

the maze – to get more balls, we’ll try to reuse the
code that we already have. We can duplicate the
dictionary data at the top of our code that we have
for the player and call it enemy1 instead of player.
You will want to change the x and y values in the
data to something like 13, which will put the enemy
ball near the middle of the maze. Now that we have
our enemy defined, we can recycle some code.

Pa
rt

 1
0 Pygame Zero

AmazeBalls: part 3

You’ll Need

> � �Raspbian

> � �Tiled (free map
editor)
mapeditor.org

> � �An image
manipulation
program such as
GIMP, or images
available from
magpi.cc/pgzero10

> � �The latest version
of Pygame Zero

TUTORIAL

113Retro Gaming with Raspberry Pi

initial frame value where enemy1 is declared at the
top of the code. Now let’s define a function called
updateEnemy(); this will make the enemy ball
move and also push some walls around.

06 Getting random
We are going to get the enemy to move

around in a random way so, as we have done
previously in this series, let’s use the random
module to generate some random movement. At
the top of our program we import the module with
from random import randint. Let’s define our
updateEnemy() function as def updateEnemy(e):.
The e variable is the enemy dictionary that we will
pass into the function when we call it. Now let’s
define some directions. We can do this with a list
of x and y directions; for example, if we had x and y
written as [0,1], that would mean move no blocks
in the x direction and one block in the y direction.

07 One direction
So, we can define all four directions as edirs

= [[-1,0],[0,1],[1,0],[0,-1]]. And then all
we need to do is pick one of them with a random
number. To choose a random integer between 0 and
3, we write r = randint(0,3). Now we can reuse

	� Changes to drawMap() to
incorporate the enemy ball

def drawMap():
 psx = OFFSETX
 psy = OFFSETY-32
 mx = psx - player["sx"]
 my = psy - player["sy"]+32

 for x in range(player["x"]-12, player["x"]+16):
 for y in range(player["y"]-12, player["y"]+16):
 if onMap(x,y):
 b = mapData["data"][y][x]
 td = findData(mapData["tiles"], "id", b)
 block = td["image"]
 bheight = td["imageheight"]-34
 bx = (x*32)-(y*32) + mx
 by = (y*16)+(x*16) + my
 if -32 <= bx < 800 and 100 <= by < 620:
 screen.blit(block, (bx, by - bheight))
 if x == player["x"] and y == player["y"]:
 screen.blit("ball"+str(player["frame"]),
(psx, psy))
 if x == enemy1["x"] and y == enemy1["y"]:
 screen.blit("eball"+str(enemy1[
"frame"]),(bx + enemy1["sx"],(by-32)+enemy1["sy"]))

figure1.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.

020.
021.

> Language: Python 3

The player can pick up
sticks of dynamite

Enemy bouncing balls
move the walls of the maze

Collected dynamite can be
used to demolish walls that
block the player

TUTORIAL

Pygame Zero: AmazeBalls part 3114

the doMove() function that moves the player, but
use it for our enemy. We do need to make a couple
of alterations to the doMove() function. The first is
to return the id of the block that is being moved to.
Then we can detect if a wall block is in the way; if
it is, we can really mess things up for the player by
moving the blocks around – sneaky, huh?

08 Making a move
The other problem that we have with the

doMove() function is that it detects if the player
has landed on the finish and if we use the same
code for the enemy, we may get the finished
condition triggered by the enemy instead of the
player, so we need to change the mazeSolved
condition to include a test to see if it’s the player
we are dealing with. Have a look at figure2.py to
see these two changes to the doMove() function.
When we’ve made those changes, we can go back
to our updateEnemy() function.

09 Dynamic blocks
So far, all the blocks have stayed in the

same place, but because they’re all represented
as numbers in our map data, we can change the
numbers in the data and we’ll see the maze change
on screen. For example, if a block has id 2, it is a
wall block. If we change the data to say that it is id
1, we’ll see the wall disappear and there will be a
floor block in its place. So, we can make changes to
the maze as the enemy ball bounces around.

10 Moving the walls
So, going back to our updateEnemy()

function, we need to first generate a random
number for our direction and then move the enemy
ball in that direction. But if it moves towards a
wall, then we attempt to move that wall block in
the direction the enemy ball is moving. The other
thing we need to check is that there is a space for
the wall to move into. We need to make a call to
doMove() using the enemy1 dictionary (passed into
updateEnemy()) and then, if the block id is 2 (a
wall), call another function called moveBlock().

11 Changing places
We need to define the moveBlock()

function and we will pass it the x and y block
position in the map data and also the direction
values that we are using to move the enemy ball.
First, the function will check that we are moving
data within the map area and then it will check
that the block we are moving the wall to is a floor
block (id 1). If this all checks out, then we copy the
id of the block we are moving to the new position.
Have a look at figure3.py to see the updateEnemy()
function and the moveBlock() function.

12 What are we doing?
The figure3.py code may look a bit daunting

in places, so let’s have a look at the detail. The
updateEnemy() function is basically defining four
directions to move in and then we are saying: if the
enemy is not currently moving, then get a random
direction and pass the x and y values of that
direction to the doMove() function. If the block we
are moving to is id 2, then move the block using
the location we are moving to and the direction
values. Then zero the screen x and y coordinates
(sx and sy) of the enemy dictionary.

Top Tip
Dynamic map
data

You can change
any block on
the map by
changing the id
in mapData. You
could have lots
of fun animating
map elements in
the update()
function.

	� When the dynamite is used, it changes all the blocks around
the player (shown in pink here) to floor blocks

	� Changes to doMove() to make sure that the enemy ball doesn’t trigger the finish condition

	� There are several
ways of creating
images for games.
such as the free 3D
modelling program
called Blender

def doMove(p, x, y):
 global mazeSolved
 if onMap(p["x"]+x, p["y"]+y):
 mt = mapData["data"][p["y"]+y][p["x"]+x]
 if mt == 1 or mt == 3:
 p.update({"queueX":x, "queueY":y,
"moveDone":False})
 if mt == 3 and p == player:
 mazeSolved = True
 return mt

figure2.py

001.
002.
003.
004.
005.
006.

007.
008.
009.

> Language: Python 3

TUTORIAL

115Retro Gaming with Raspberry Pi

13 It’s all relative
You will notice that if the enemy is

moving, then we check to see if we are on frame
seven (when the ball actually moves from one
block to another in the data) and if so, we fix up
the coordinates so they are now relative to the
new map location rather than the old one. The
moveBlock() function just checks directly with the
mapData data to check that the block can be moved,
moves the data from the source location to the
target location, and sets the source location to be a
floor block.

14 Multiple enemies!
When all that is done, we just need to add

updateEnemy(enemy1) after our updateBall()
calls in the Pygame Zero update() function. Now,
it may be that we consider that one enemy ball
is not enough to make the game interesting and
to make a second one is very easy now. We just
need to duplicate the enemy1 dictionary and call
it enemy2, change the starting x and y to perhaps
25, make calls to updateBall(enemy2) and
updateEnemy(enemy2) in the update() function
and before you know it you have a second enemy
ball. You could make as many as you like, or maybe
put them in a list to be more efficient if there are
more than three.

15 A bit one-sided
Now that we have baddies messing up our

maze, it’s going to get pretty difficult for our player
to get through to the finish, so it’s time to level
the playing field, in this case quite literally. Let’s
introduce some dynamite into the mix! We’ll need
to make a tile graphic for the dynamite that we can
use in the Tiled map editor, and also an icon that
we can use to show how many sticks of dynamite
the player has collected. If you want to use ready-
made graphics and map data, they are available
from the GitHub repo: magpi.cc/pgzero10.

16 Handling the explosives
First, let’s add a variable to hold the number

of sticks of dynamite being held by the player,
which can be done by writing "dynamite":0 as part
of the player dictionary. Then, assuming that we

	� Updating the enemy ball and moving blocks if walls are in the way

	� The updated update() function to include two enemy balls

def update(): # Pygame Zero update function
 global player, timer
 mt = 0
 if player["moveDone"] == True:
 if keyboard.left: mt = doMove(player, -1, 0)
 if keyboard.right: mt = doMove(player, 1, 0)
 if keyboard.up: mt = doMove(player, 0, -1)
 if keyboard.down: mt = doMove(player, 0, 1)
 if mt == 4:
 mapData["data"][player["y"] + player["queueY"]][
player["x"] + player["queueX"]] = 1
 player["dynamite"] += 1
 updateBall(player)
 updateBall(enemy1)
 updateBall(enemy2)
 updateEnemy(enemy1)
 updateEnemy(enemy2)

figure4.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.

011.
012.
013.
014.
015.
016.

> Language: Python 3

def updateEnemy(e):
 edirs = [[-1,0],[0,1],[1,0],[0,-1]]
 if e["moveX"] == 0 and e["moveY"] == 0:
 r = randint(0,3)
 if doMove(e, edirs[r][0], edirs[r][1]) == 2:
 moveBlock(e["x"]+edirs[r][0],e["y"]+edirs[r]
[1],edirs[r][0],edirs[r][1])
 e["sx"] = e["sy"] = 0
 else:
 if e["frame"] == 7 and e["movingNow"] == True:
 if e["sx"] == 12: e["sx"] -= 32
 if e["sx"] == -12: e["sx"] += 32
 if e["sy"] == 6: e["sy"] -= 16
 if e["sy"] == -6: e["sy"] += 16

def moveBlock(mx,my,dx,dy):
 if onMap(mx+dx,my+dy):
 d = mapData["data"][my+dy][mx+dx]
 if d == 1:
 mapData["data"][my+dy][mx+dx] =
mapData["data"][my][mx]
 mapData["data"][my][mx] = 1

figure3.py

001.
002.
003.
004.
005.
006.

007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.

020.

> Language: Python 3

http://magpi.cc/NvafjA

TUTORIAL

Pygame Zero: AmazeBalls part 3116

have added some dynamite to our map data (see
the previous part of this series for details on editing
with Tiled), we need to detect if our player has
moved onto a dynamite block and, if so, add 1 to our
dynamite count and make the dynamite block into
a floor block, which will make it disappear from the
map. We can do this in our update() function.

17 Stockpiling ammo
To handle the picking up, we just need to

test the value of mt after our keyboard checks.
See figure4.py to view the revised update()
function. When our player has picked up some
dynamite, we can display the number held with
icons, as we have done before (for example with
lives), in the draw() function by writing for
l in range(player["dynamite"]): screen.
blit("dmicon", (650+(l*32),80)), which will
draw our dynamite icons in the top right of the
screen. So now we have the ammunition for our
player to blow a path through the blockages that
the baddies have put in the way.

18 Going off with a bang
All we have left to do now is to code a

mechanism to set off the dynamite. We will
do this with the Pygame Zero on_key_down()
function. We need to test if the SPACE bar has
been pressed and, if so, clear a space around the
player, making all the blocks into floor blocks.
This can be done with a nested for loop. Have a
look at the full amazeballs3.py listing to see this
last bit of code.

Now is the time to test how the game is set up, is
it too easy or too hard? Do you need more or fewer
enemies? You could try making a range of different
maps with other objects to collect.

19 And finally
Well, sadly that’s all we have time for in

this series. We hope you have learned a lot about
Pygame Zero and writing games in Python. We
must at this stage give a big shout out to the
creator of Pygame Zero, Daniel Pope: without his
excellent work, this series would not have existed.
We hope you would agree that the Pygame Zero
framework is an ideal starting place to learn game
coding on the Raspberry Pi.

amazeballs3.py
> Language: Python

001.	
002.	
003.	
004.	
005.	
006.	
007.	 	

008.	
009.	
010.	 	

011.	
012.	
013.	 	

014.	
015.	
016.	
017.	
018.	
019.	
020.	
021.	
022.	
023.	
024.	
025.	 	
	
	
026.	 	

027.	
028.	 	
	
	
029.	
030.	
031.	
032.	
033.	
034.	
035.	
036.	
037.	
038.	
039.	
040.	 	

041.	
042.	
043.	
044.	
045.	
046.	
047.	
048.	
049.	
050.	
051.	

import pgzrun
import map3d
from random import randint

player = {"x":3, "y":3, "frame":0, "sx":0, "sy":96,
 "moveX":0, "moveY":0, "queueX":0, "queueY":0,
 "moveDone":True, "movingNow":False,
"animCounter":0, "dynamite":0}
enemy1 = {"x":13, "y":13, "frame":0, "sx":0, "sy":0,
 "moveX":0, "moveY":0, "queueX":0, "queueY":0,
 "moveDone":True, "movingNow":False,
"animCounter":0}
enemy2 = {"x":25, "y":25, "frame":0, "sx":0, "sy":0,
 "moveX":0, "moveY":0, "queueX":0, "queueY":0,
 "moveDone":True, "movingNow":False,
"animCounter":0}
OFFSETX = 368
OFFSETY = 300
timer = 0
mazeSolved = False

mapData = map3d.loadmap("maps/map1.json")

def draw(): # Pygame Zero draw function
 screen.fill((0, 0, 0))
 drawMap()
 screen.blit('title', (0, 0))
 screen.draw.text("TIME: "+str(timer) , topleft=(20,
80), owidth=0.5, ocolor=(255,255,0), color=(255,0,0) ,
fontsize=60)
 for l in range(player["dynamite"]): screen.blit(
"dmicon", (650+(l*32),80))
 if mazeSolved:
 screen.draw.text("MAZE SOLVED in " + str(timer) + "
seconds!" , center=(400, 450), owidth=0.5, ocolor=(0,0,0),
color=(0,255,0) , fontsize=60)

def update(): # Pygame Zero update function
 global player, timer
 mt = 0
 if player["moveDone"] == True:
 if keyboard.left: mt = doMove(player, -1, 0)
 if keyboard.right: mt = doMove(player, 1, 0)
 if keyboard.up: mt = doMove(player, 0, -1)
 if keyboard.down: mt = doMove(player, 0, 1)
 if mt == 4:
 mapData["data"][player["y"] + player["queueY"]][
player["x"] + player["queueX"]] = 1
 player["dynamite"] += 1
 updateBall(player)
 updateBall(enemy1)
 updateBall(enemy2)
 updateEnemy(enemy1)
 updateEnemy(enemy2)

def on_key_down(key):
 if player["dynamite"] > 0 and key.name == "SPACE":
 player["dynamite"] -= 1
 for x in range(player["x"]-1, player["x"]+2):

TUTORIAL

117Retro Gaming with Raspberry Pi

052.	
053.	
054.	
055.	
056.	
057.	
058.	
059.	
060.	
061.	
062.	
063.	
064.	
065.	
066.	
067.	
068.	
069.	
070.	
071.	
072.	
073.	
074.	
075.	
076.	

077.	
078.	

079.	

080.	

081.	

082.	

083.	
084.	
085.	
086.	
087.	
088.	
089.	
090.	
091.	 	

092.	
093.	
094.	
095.	
096.	
097.	
098.	
099.	
100.	

101.	
102.	
103.	

104.	
105.	
106.	
107.	
108.	
109.	
110.	

111.	
112.	
113.	
114.	
115.	
116.	
117.	
118.	
119.	
120.	
121.	
122.	
123.	

124.	
125.	
126.	
127.	
128.	
129.	
130.	
131.	
132.	
133.	
134.	
135.	
136.	
137.	
138.	
139.	
140.	
141.	

142.	
143.	

144.	
145.	

146.	
147.	
148.	
149.	
150.	
151.	
152.	
153.	
154.	
155.	

for y in range(player["y"]-1, player["y"]+2):
mapData["data"][y][x] = 1

def timerTick():
 global timer
 if not mazeSolved:

timer += 1

def drawMap():
 psx = OFFSETX
 psy = OFFSETY-32
 mx = psx - player["sx"]
 my = psy - player["sy"]+32

 for x in range(player["x"]-12, player["x"]+16):
for y in range(player["y"]-12, player["y"]+16):

if onMap(x,y):
b = mapData["data"][y][x]
td = findData(mapData["tiles"], "id", b)
block = td["image"]
bheight = td["imageheight"]-34
bx = (x*32)-(y*32) + mx
by = (y*16)+(x*16) + my
if -32 <= bx < 800 and 100 <= by < 620:

screen.blit(block, (bx, by -
bheight))

if x == player["x"] and y == player["y"]:
screen.blit("ball"+str(player[

"frame"]), (psx, psy))
if x == enemy1["x"] and y ==

enemy1["y"]:
screen.blit("eball"+str(enemy1[

"frame"]), (bx + enemy1["sx"], (by-32)+enemy1["sy"]))
if x == enemy2["x"] and y ==

enemy2["y"]:
screen.blit("eball"+str(enemy2[

"frame"]), (bx + enemy2["sx"], (by-32)+enemy2["sy"]))

def findData(lst, key, value):
 for i, dic in enumerate(lst):

if dic[key] == value:
return dic

 return -1

def onMap(x,y):
 if 0 <= x < mapData["width"] and 0 <= y <
mapData["height"]:

return True
 return False

def doMove(p, x, y):
 global mazeSolved
 if onMap(p["x"]+x, p["y"]+y):

mt = mapData["data"][p["y"]+y][p["x"]+x]
if mt == 1 or mt == 3 or mt == 4:

p.update({"queueX":x, "queueY":y,
"moveDone":False})

if mt == 3 and p == player:
mazeSolved = True

return mt

def updateEnemy(e):
 edirs = [[-1,0],[0,1],[1,0],[0,-1]]
 if e["moveX"] == 0 and e["moveY"] == 0:

r = randint(0,3)
if doMove(e, edirs[r][0], edirs[r][1]) == 2:

moveBlock(e["x"]+edirs[r][0],e["y"]+
edirs[r][1],edirs[r][0],edirs[r][1])

e["sx"] = e["sy"] = 0
 else:

if e["frame"] == 7 and e["movingNow"] == True:
if e["sx"] == 12: e["sx"] -= 32
if e["sx"] == -12: e["sx"] += 32
if e["sy"] == 6: e["sy"] -= 16
if e["sy"] == -6: e["sy"] += 16

def moveBlock(mx,my,dx,dy):
 if onMap(mx+dx,my+dy):

d = mapData["data"][my+dy][mx+dx]
if d == 1:

mapData["data"][my+dy][mx+dx] =
mapData["data"][my][mx]

mapData["data"][my][mx] = 1

def updateBall(p):
 if p["movingNow"]:

if p["moveX"] == -1: moveP(p,-1,-0.5)
if p["moveX"] == 1: moveP(p,1,0.5)
if p["moveY"] == -1: moveP(p,1,-0.5)
if p["moveY"] == 1: moveP(p,-1,0.5)

 p["animCounter"] += 1
 if p["animCounter"] == 4:

p["animCounter"] = 0
p["frame"] += 1
if p["frame"] > 7:

p["frame"] = 0
if p["frame"] == 4:

if p["moveDone"] == False:
if p["queueX"] != 0 or p["queueY"] !=0:

p.update({"moveX":p["queueX"],
"moveY":p["queueY"], "queueX":0, "queueY":0,
"movingNow": True})

else:
p.update({"moveDone":True, "moveX":0,

"moveY":0, "movingNow":False})

if p["frame"] == 7 and p["moveDone"] == False
and p["movingNow"] == True:

p["x"] += p["moveX"]
p["y"] += p["moveY"]
p["moveDone"] = True

def moveP(p,x,y):
 p["sx"] += x
 p["sy"] += y

clock.schedule_interval(timerTick, 1.0)
pgzrun.go()

magpi.cc/pgzero10

DOWNLOAD
THE FULL CODE:

http://magpi.cc/pgzero10

INSPIRING PROJECTS
AND STEP-BY-STEP BUILDS

120 	�MINI LUNCHBOX ARCADE
Marvel at this mini retro arcade in a box

122 	�4D ARCADE MACHINE
Raspberry Pi-powered game with
extra interactive elements

126 	��BUILD A
PORTABLE CONSOLE
Create the ultimate retro handheld
with PiGRLL 2

140 	�MAKE YOUR OWN
PINBALL MACHINE
Build a table with this step-by-step guide

146 	�BUILD AN
ARCADE MACHINE
Make your own retro cabinet
with Raspberry Pi

ARCADE
PROJECTS

 �Build your own perfect and
brand new arcade emulation
machine with Raspberry Pi

Arcade projects118

119Retro Gaming with Raspberry Pi

H aving already built a full-size tabletop-style
arcade cabinet powered by a Raspberry Pi,
Daniel Davis wanted to make something a little

more portable to feed his passion for retro gaming. So
when he acquired an old metal lunchbox, the last thing
on his mind was using it to store sandwiches. Instead,
he opted to pack it with a retro arcade system built
using a Raspberry Pi 3, Adafruit Backpack 5-inch HDMI
touchscreen, Adafruit Arcade Bonnet, speaker, plus an
analogue joystick and mini arcade buttons.

“The challenge was sourcing arcade buttons
and components that would fit,” says Daniel. “For
instance, standard-sized arcade buttons were too
large to fit inside. I also had to take into consideration
the depth of the screen so that when the lid closed, it
didn’t smash into any of the other components.”

Neat and tidy
Rather than simply cramming components into the
box, Daniel wanted to make the system organised and
easy to use, “so that anyone could open it up and be

Never mind a packed lunch, have a fun-packed lunchtime
with this mini retro arcade in a box. By Phil King

Daniel
Davis

Daniel is a retro-
modern perpetual
beta tester who is
an IT specialist by
day and a YouTuber
by night. He lives to
learn and loves 	
to tinker.

tinknernut.com

M
A

K
ER

familiar with the control layout (which mimics that
of a classic games console controller).”

To keep everything looking secure, and hide
the wiring, Daniel 3D-printed a screen holder
and controller board that he’d designed in a CAD
program. “Once I had all the components laid out,
I did a couple of test prints to make sure everything
fit, but then I realised that I hadn’t designed
anywhere for the wires to go (especially for the
screen). So I had to go back and redesign the casing
to allow room for the various wiring.”

Daniel recalls that a lot of time was spent
measuring, testing, and measuring again. “I went
through several different types of arcade buttons
before I found ones that did the job and fit in such
a small space.”

Ensuring that the control panel was low enough
to allow enough room for the screen when the
box was closed was another crucial factor: “If the
lunchbox couldn’t close properly, it defeated the
whole purpose of the project.”

> � �The lunchbox
measures 	
17 × 12 × 6.3cm

> � �A 5200 mAh power
bank supplies 	
the juice

> � �It’ll run for about an
hour per charge

> � Build details 	
can be found at
magpi.cc/2nwQtlE

> � Daniel is working on
four new Pi projects

Quick FACTS

Mini Lunchbox Arcade

Games are run in
RetroPie and displayed
on a 5-inch touchscreen

Since the metal
box is conductive, it
had to be lined with
insulating tape

The arcade controls
and speaker are fitted
into a 3D-printed
board for a neat finish

SHOWCASE

Mini Lunchbox Arcade120

http://tinknernut.com
http://magpi.cc/2nwQtlE

Arcade experience
Daniel tells us that his previous experience of
building an arcade cabinet in 2013 helped when
approaching this smaller project. Since then, the
build process has become a lot easier, thanks to the
availability of various Raspberry Pi HATs and bonnets
which “made everything a breeze to connect. Aside
from that, the available software for the Pi to make
arcade emulation possible is also something that has
become a lot better over the years.”

Daniel spent about 20 hours, spread over several
weeks, to complete the build. The end result is a
cute and compact arcade system that’s simple to
pick up and play (youtu.be/h8nhqowESKg).

Upon being shown the Mini Lunchbox Arcade,
Daniel’s nephew was “really shocked to see what
was inside. He was able to immediately figure out
how to turn it on and start playing a game. He did
say that if I could find a way to sell them, all of
his friends would buy one and I’d make a million
dollars. That’s quite the endorsement!”

	� The system runs the
RetroPie retro gaming
OS on a Raspberry Pi 3. A
software fix was required
to ensure the interface
filled the screen

	� The joystick, arcade
buttons, and mini
speaker were hot-glued
to Daniel’s 3D-printed
controller board

Filling a lunchbox

One obvious problem with using a metal box
is its conductivity, so to avoid any possibility

of short circuits, Daniel lined it with Kaplon insulating
tape before adding the electronics.

01

02 The analogue thumb joystick, six buttons,
and 0.25 W 8 Ω speaker were connected to an

Adafruit Arcade Bonnet. A couple of freely available
scripts were then run to get everything working.

03 After careful measuring, Daniel designed and
3D-printed a screen holder, which he hot-glued

to the lunchbox lid, and a board to house the arcade
controls and speaker.

SHOWCASE

121Retro Gaming with Raspberry Pi

http://youtu.be/h8nhqowESKg

I f you’re going to add a little something extra to
wow the crowd at the Gamescom video games
trade fair, a Raspberry Pi is a surefire way of

getting you noticed. And that’s the way Pixel Maniacs
went about it.

The Nuremberg-based games developer retrofitted
an arcade machine with a Raspberry Pi to showcase its
intentionally silly Can’t Drive This precarious driving
game (magpi.cc/TphZao) at Gamescom.

Complete with wrecking balls, explosions, an
inconvenient number of walls, and the jeopardy
of having to construct your road as you negotiate
your way, at speed, across an ocean to the relative
safety of the next lump of land, Can’t Drive This
is a fast‑paced racing game.

Splash action
Pixel Maniacs then took things up a notch by
providing interactive elements, building a mock
4D arcade game (so-named because they feature

A Raspberry Pi-powered arcade display with hidden
interactive controls won over the crowds at Gamescom.
Rosie Hattersley and Rob Zwetsloot got the inside scoop

4D Arcade Machine:
Can’t Drive This

Machine creator Pixel
Maniacs usually makes
PC and console games

Pixel Maniacs

Pixel Maniacs is a
Nuremberg-based
games maker that
started out making
mobile apps. These
days it specialises
in games for
modern video game
consoles and PC
computers. You
Can’t Drive This is
its first foray into
gaming with a
Raspberry Pi.

M
A

K
ER

pixel-maniacs.com

 �This two-player
co‑operative game
involves one player
building the track while
the other drives along it

SHOWCASE

4D Arcade Machine: Can’t Drive This122

http://magpi.cc/TphZao
http://pixel-maniacs.com

Can’t Drive This involves one
player building a road, while
the other drives it – fast!

A Raspberry Pi is used
to power the retro-tastic
256-LED display

> � �The 1980s arcade
machine was
originally destined
for the dump

> � �Several Gamescom
attendees tried to
buy the project on
the spot

> � �Players receive
a customised
memento of
them playing on
the machine

> � �The company’s
first game was
puzzle-shooter
ChromaGun

> � �The team’s next
project sees
them play around
with time

Quick FACTS

123Retro Gaming with Raspberry Pi

SHOWCASE

interactive elements such as motion cabinets).
The fourth dimension in this case saw the
inclusion of a water spray, fan, and console lights.
For its Gamescom debut, Pixel Maniacs presented
Can’t Drive This in a retro arcade cabinet, where
hordes of gaming fans gathered round its four-way
split screen to enjoy the action.

Adding Raspberry Pi gaming to the mix was
about aiding the game development process as
much as anything. Andy Holtz, Pixel Maniacs’
software engineer, says the team wanted an LED
matrix with 256 RGB LEDs to render sprite-sheet
animations. “We knew
we needed a powerful
machine with enough
RAM, and a huge
community, to get the
scripts running.”

Pixel Maniacs’ offices have several Raspberry Pi-
controlled monitors and a soundboard, so the team
knew Raspberry Pi’s potential.

The arcade version of the game runs off a
gaming laptop cunningly hidden within the walls

of the cabinet, while a Raspberry Pi delivers
the game’s surprise elements such as an
unexpected blast from a water spray. A fan
can be triggered to simulate stormy weather,
and lights start flashing crazily when the cars

crash. Andy explains that
the laptop “constantly
sends information
about the game’s state
to Raspberry Pi, via a
USB UART controller.
[Raspberry] Pi reads
these state messages,
converts [them],
and sends according
commands to the fans,

SPEAKER

Raspberry Pi Power Supply

RGB LED MATRIX

FAN
LEFT

SPEAKER
FRONT
LEFT

SPEAKER
FRONT
RIGHT

BUTTON PANEL

TEHRMAL
PRINTER

ACTIVE
SUBWOOFER

NOTEBOOK

FAN
RIGHT

WATER
SPRAYER

CAMERA

27” Monitor

SPEAKER SPEAKER

 �Replacing the original
1980s kit with modern-
day processors
and Raspberry Pi-
powered additions

 �The schematic for the
4D arcade machine,
showing the importance
of Raspberry Pi as
a controller

 �Having played your
heart out, you get a
photo-booth-style
shot of you in full-on
gaming action

4D Arcade Machine: Can’t Drive This124

SHOWCASE

water nozzle, camera, and the LED light matrix. So,
when players drive through water, the PC sends
the info to [Raspberry] Pi, and [the latter] turns on
the nozzle, spraying them.”

The arcade idea came about when Pixel Maniacs
visited the offices of German gaming magazine
M! Games and spied an abandoned, out-of-order
1980s arcade machine lurking unloved in a corner.
Pixel Maniacs set about rejuvenating it, Da Doo Ron
Ron soundtrack and all.

Sustained action
Ideas are one thing; standing up to the rigours of
a full weekend’s uninterrupted gameplay at the
world’s biggest games meet is something else.
Andy tells us, “Raspberry Pi performed like a beast

throughout the entire time. Gamescom was open
from 9am till 8pm, so it had to run for eleven
hours straight, without overheating or crashing.
Fortunately, it did. None of the peripherals
connected to [Raspberry] Pi had any problems, and
we did not have a single crash.”

Fans were enthusiastic too, with uniformly
positive feedback, and one Gamescom attendee
attempting to buy the arcade version there and
then. As Andy Holtz says, though, you don’t sell
your baby. Instead, Pixel Maniacs demonstrated
it at games conventions in Germany in autumn
2018, before launching Can’t Drive This across
gaming platforms.

Arcade gaming reimagined

A Raspberry Pi 3B+ was used to trigger the
water spray, lights, and fans, bringing an extra

element to the gameplay, as well as rendering the
arcade machine’s graphics.

01

03 Can’t Drive This is every bit as engaging and
frustrating to play as other driving arcade games,

but this one comes with the unexpected jeopardy of
getting blasted with water for your troubles.

02 The transformation from a decidedly unloved-
looking eighties console to a modern 4D

gaming machine owes a great deal to the team’s
imagination, as well as the additions Raspberry Pi
made possible.

 Raspberry Pi delivers the game’s surprise
elements such as an unexpected blast from
a water spray

 �Pixel Maniacs
reprogrammed a
handheld games
console controller for
the arcade machine

SHOWCASE

125Retro Gaming with Raspberry Pi

P ortable gaming has been hugely
popular ever since the the late
eighties. Building on the work of

earlier LCD games, the 1980s handhelds
allowed you to take one machine
wherever you went. They played a
multitude of games via handy cartridges
filled with code, including portable
versions of video game classics.

Since then, handheld gaming and
computers have evolved. Mobile
phones have become a great source
for providing quick hits, while games
companies go all out with handheld
systems that contain ultra-powerful
components. On the computing side,
processing power has advanced to such
a degree that Raspberry Pi is powerful

enough to emulate several popular retro
home consoles, while also being small
enough to carry around.

This is why the PiGRRL projects
from Adafruit are popular: handheld,
old‑school consoles you can use on the
go. There are many versions of them,
based on everything from original models
of Raspberry Pi to Raspberry Pi Zero.

With Raspberry Pi Zero W, these
projects can go even further thanks to
the built-in wireless LAN, and it also
leaves more space for a bigger battery.
And a bigger battery means longer play
time. In this guide, we’re going to show
you how to take the PiGRRL 2 and do just
this. Grab your work dungarees and let’s
go build a games console!

Build upon Adafruit's amazing PiGRRL 2 using a Raspberry
Pi Zero W to create the ultimate retro handheld console…

BUILD A
PORTABLE
CONSOLE

FEATURE

Build a portable console126

FEATURE

127Retro Gaming with Raspberry Pi

FEATURE

Build a portable console128

Here’s what you’ll need to make the Pi GRRL Zero W

ASSEMBLE
YOUR PARTS

Raspberry Pi Zero W
> magpi.cc/pizerow <
The key to this project is Raspberry Pi Zero W, or
Raspberry Pi Zero WH (magpi.cc/zerowh) which comes
with the GPIO pins attached. This board saves a load
of space thanks to the radio chip included in it, so no
WiFi dongle is needed. It runs at 1GHz, which makes it
powerful enough to run many emulators.

3D-printed
case
> magpi.cc/2kS9K1f <
The PiGRRL 2 case repurposed for our needs.
It has some spaces for USB and Ethernet on a
Raspberry Pi full-size board, but a Raspberry Pi
Zero will require extensions if you want to make
use of the gaps.

This is actually a touchscreen, although
we won’t be making use of it in that way.
It fits neatly in the case and provides
four extra buttons to use when playing
games. You can also assign system and UI
shortcuts to the buttons.

Adafruit
PiTFT 2.8”
> magpi.cc/2lob5Ky <

TOOLS
FOR THE JOB

Soldering iron

Wire

Heat shrink

Glue

Blu Tack

Wire strippers

Hobby knife

http://magpi.cc/2l6zurq
http://magpi.cc/2kS9K1f
http://magpi.cc/2lob5Ky

FEATURE

129Retro Gaming with Raspberry Pi

Microswitches
> magpi.cc/2lo890i <
The beauty of proper retro gaming is tactile
controls. You’ll need ten 6mm switches,
and a couple of 12 mm buttons.

Slide switch
> magpi.cc/2lojfTb <
This switch allows you to turn the power
on and off. It’s best to do the software
shutdown of RetroPie first before
switching the power off, though.

PowerBoost
1000C
> magpi.cc/2lo5aFg <
This is one of the cool bits: we’re going
to use this PowerBoost to actually charge
a battery within the handheld. With the
low power draw of Raspberry Pi and
advancements in modern battery tech,
you’ll get a lot out of one charge.

PiGRRL 2
controller
board
> magpi.cc/2lohZzr <

This Custom Gamepad PCB is
designed to fit the case perfectly.
We did try to see if a standard
USB PCB would fit inside, but
they were far too big.

2500 mAH
battery
> magpi.cc/2lQzVmr <
We squeezed the biggest battery into
here that we possibly could. This way,
it should last for hours and hours.

GPIO hammer
headers
> magpi.cc/2lohN2U <
A wonderful innovation, these GPIO
headers require zero soldering and
can be (carefully) hammered
onto the empty pins
of a Raspberry Pi Zero.

SCREWS
A selection of

screws to attach

the parts to the

case. This includes

14× #4-40 and

6× #2-56 3/8

machine screws.

Bluetooth audio (optional)
There’s no dedicated Audio Out on the Pi Zero W, but it
does have Bluetooth and RetroPie supports Bluetooth
audio. Get a pair of Bluetooth headphones and take a
look at this tutorial: magpi.cc/e9cypq

http://magpi.cc/2lo890i
http://magpi.cc/2lojfTb
http://magpi.cc/2lo5aFg
http://magpi.cc/2lohZzr
http://magpi.cc/2lQzVmr
http://magpi.cc/2lohN2U

FEATURE

Build a portable console130

GET THE FILES AT

magpi.cc/2kS9K1f

USE 3DHUBS.COM

to print your case!

What you need to know about 3D-printing the Pi GRRL 2 case

PRINT THE CASE

T he proliferation and advancement of 3D
printing has been a huge boon for the
maker community, enabling you to create

wonderful chassis and cases for your final products.
The PiGRRL series has a number of cases built
around Raspberry Pi that allow for maximum

efficiency in size, while also allowing for a fully
operational handheld.

For this project, we’re going to make use of the
slightly larger PiGRRL 2 case for maximum comfort,
and also so we can use the extra space to install a
bigger battery into it. Here’s how to make your own.

HOW TO PRINT
YOUR 3D CASE
>STEP-01

GET THE FILES
The full PiGRRL 2 case files can be
downloaded from magpi.cc/2kS9K1f,
although there are more files here than
what you actually need to print. The ones
you’ll need from the pack are:

pigrrl2-top.stl

pigrrl2-bot.stl

pitft-buttons.stl

dpad2.stl

action-btns.stl

pause-start.stl

shoulder-btns.stl

shoulder-mount.stl

>STEP-02

FIND A 3D
PRINTER
It can be tricky to find a good 3D printing service
online, so unless you have access to a 3D printer, we
highly recommend using 3DHubs.com. It lists local 3D
printing services, along with an estimated completion
time and reviews. The files we downloaded also work
with the service.

>STEP-03

UPLOAD FILES
Once you’ve selected your printer, you’ll be asked to upload
the files. Double-check you’ve selected the correct ones and
make sure they upload properly – you’ll get an error if they fail.
Usually, trying again will work. You also only need one of each,
and ABS or PLA are great materials to use for the parts.

http://magpi.cc/2kS9K1f
http://3DHubs.com
http://magpi.cc/2kS9K1f
http://3DHubs.com

FEATURE

131Retro Gaming with Raspberry Pi

X
Y A

B

RIGHT SHOULDERLEFT SHOULDER

D-PAD UP

D-PAD LEFT

D-PAD DOWN

D-PAD RIGHT

SELECT START

F or this project, we’re using the excellent
RetroPie to power our emulation software.
You’ll first need to download the image for

RetroPie from its website here: magpi.cc/25UDXzh.
Write it to a microSD card and pop it into your
Raspberry Pi Zero W. Get that hooked up to a monitor
along with a keyboard, and we can get it ready.

You’ll first need to map some buttons – as the PCB
controller isn’t hooked up yet, we’ll have to quickly
use the keyboard for the initial setup. Make sure the
directional keys, Start, Select, A, and B are assigned a
key and just hold down the space bar to skip anything
else. Once that’s done, connect to the wireless using
the info in the ‘Setting up wireless’ boxout.

To get our final build working, we need to make
sure to install support for the PiTFT, as it’s not
supported natively. SSH into your Raspberry Pi
Zero W at retropie.local or press F4 to enter the
command line on RetroPie, and enter the following:

 cd
 curl -O https://raw.githubusercontent.
com/adafruit/Raspberry-Pi-Installer-
Scripts/master/pitft-fbcp.sh
 sudo bash pitft-fbcp.sh

Select PiGRRL 2 and don’t reboot. Now we need
to add support for the custom buttons. Back in the
command line, use:

 cd
 curl -O https://raw.githubusercontent.
com/adafruit/Raspberry-Pi-Installer-
Scripts/master/retrogame.sh
 sudo bash retrogame.sh

Select PiGRRL 2 again and then reboot the system.
Once we’ve put all the parts together, and before
it’s assembled in the case, we’ll need to configure
the controls for the buttons we’ve made and added
to the project. Press the button assigned to Start
and select Configure Input, and then go through the
configuration process again.

Get your Raspberry Pi Zero W ready to be made into a retro gaming treasure

GET RASPBERRY PI

Wireless connectivity on Raspberry Pi Zero W is great, but the
configuration method for wireless LAN on the RetroPie is very
basic. You’ll need to know the name of your wireless network
(SSID) along with the password, as it won’t be able to search for
available networks. You can also import details by loading a .txt
file onto the boot partition.

SETTING UP WIRELESS

When you come back to reconfigure your buttons, refer to this handy guide

The configuration screen starts by asking
about your current controller setup

http://magpi.cc/25UDXzh

FEATURE

Build a portable console132

Follow along and build your retro handheld

BUILD THE SYSTEM

>STEP-01

PREPARE THE
GAMEPAD BOARD
Our first job is to solder the header pins onto the
Gamepad board. You can keep it all in place with a
little Blu-Tack before soldering it on. Make sure you’re
soldering the header onto the correct side of the board.

>STEP-02

ADD THE
BUTTONS
Now it’s time to carefully solder
the ten 6 mm microswitches
to the front of the board.
Some helping hands would
be good here.

>STEP-03

TURN ON
THE BACKLIGHT
By default, the PiTFT doesn’t have its backlight
turned on. You need to take a craft knife and cut the
circuit between the blocks in the #18 box that you can
see circled in the picture.

FEATURE

133Retro Gaming with Raspberry Pi

>STEP-05

ASSEMBLE
THE CABLE
Using something like a pen or pin, you’ll need to push
in the clip that holds the connector in place on the
part you’re discarding. Very carefully remove the cable
and install it at the end of your newly trimmed cable.

>STEP-04

RESIZE
THE
RIBBON
CABLE
It’s a good idea to shorten
the ribbon cable. 108mm is
apparently the perfect size, but
you can go a little longer. Once
you’ve measured it, cut the cable.

>STEP-06

PREPARE
FOR POWER
To make all our soldering easier, we’ll dab some
solder onto the spots where we need it for the
moment. On the PowerBoost 1000C, add some
solder to the positive and negative pins, and the
EN and GND pins. Cut one of the legs off the power
switch and put some solder on the other two.

FEATURE

Build a portable console134

>STEP-07

SOLDER ON THE SWITCH
Make sure the power switch will fit in the hole for it in the case – it’s on
the side of the bottom part. You may need to file away the plastic a bit.
Once that’s done, trim two short bits of wire to about 7 cm long and solder
one to each leg. Solder those to EN and GND – it doesn’t matter which way
around they go.

>STEP-08

SHOULDER
BUTTONS
The shoulder buttons (the 12 mm ones) need to
be attached to the controller board much like the
switch was connected to the power board. Clip two
legs off each and use a pair of pliers to flatten the
remaining two. Solder wires to each pin (about 14cm
long) and then solder the other end to the bumper
pins on the controller board. Again, polarity doesn’t
matter, but keep each one as a pair in the row.

>STEP-09

WIRE IT
ALL UP
Now we can combine the power
with the controller board, which
will allow us to provide power
to the whole system. Solder two
wires (about 14 cm long) to the
underside of the 5 V and GND pins
on the controller board. The 5 V
wire should then be soldered to the
positive of the PowerBoost board,
with the GND to the negative.

FEATURE

135Retro Gaming with Raspberry Pi

>STEP-12

BACK PLATE
You’ll now need to mount the back buttons and
the PowerBoost. The rear buttons have a plate
that keeps them in place, and Adafruit suggests
using a little Blu-Tack to stick the switches in
position. You’ll attach the power switch and then
finally screw on the PowerBoost. Be careful with
the wires that you’ve soldered on.

>STEP-10

HAMMER
THE HEADS
It’s now a good idea to add the GPIO
headers to Raspberry Pi Zero W. Gently
hammer them in until they’re secure,
and you’re done. >STEP-11

BEGIN CONSTRUCTION!
Take the top of the case and insert all the button 3D prints. Once that’s
done, insert the screen and screw it in, followed by the controller board.
Finish up the top bit by connecting the two with the ribbon cable, and
then insert your Raspberry Pi Zero into the header on the PiTFT.

TEST IT ALL OUT!

At this point you can test the
entire system, otherwise we’ll
move onto final construction…

>STEP-13

CLOSE IT UP
Now you can finally close it up! Insert
the battery and tape it down if need
be, before screwing it shut. Make sure
all the cables are safely inside the case
before tightening it, though!

Prefer to use a

full-sized Raspberry Pi?

Check out the original

PiGRRL 2 guide:

magpi.cc/2l0ALzQ

WANT
TO KNOW
MORE?

http://magpi.cc/2l0ALzQ

FEATURE

Build a portable console136

CONNECT
VIA SSH
Physically connecting to a Raspberry Pi Zero inside is a massive
hassle once the case is screwed together. With Raspberry Pi Zero W
connected to your home network, though, it’s easy to connect to it
remotely from another computer using SSH.

On a macOS or Linux machine (which includes another Raspberry
Pi!), you can simply open the terminal or command line and enter the
following to connect:

ssh pi@retropie

It will prompt you for a password, which (by default) is raspberry.
The username in this instance is pi, with retropie being the default
name for the system on the network.

For Windows machines, you’ll have to connect using an SSH
application like PuTTY
(magpi.cc/2lBHCRm). Once
it’s installed, you need to set
the host name to retropie,
the port to 22, and then click
Open. You’ll need to put
in pi as the username and
raspberry as the password.

Once inside, you can control
many aspects of the system
via the command line. If
you’ve used the terminal in
Raspbian, you’ll know how it
works: sudo reboot, ls, cd, etc.

Here’s some of the advantages of having the
PiGRRL powered by Raspberry Pi Zero W

USING A
WIRELESS
PIGRRL

You can ignore a lot of the PuTTY interface
when just connecting to the handheld

You can update RetroPie from the handheld itself
or via SSH in the command line. The keyboard
might be better suited for this, so if you’re by your
computer it wouldn’t hurt to use it instead.

From the handheld, you need to go to the
RetroPie menu in EmulationStation and activate
the setup script. From the terminal (if you’ve
SSHed in), you can use the following command:

sudo ~/RetroPie-Setup/retropie_setup.sh

From here, look for the ‘Update All Installed
Packages’ option. There are many options here
that you can select from, including managing the
individual packages in case you want to remove
or add any. To update, you can select the option
‘Update all installed packages’ (which will also
update the RetroPie-Setup script as well) or
you can go to ‘Manage packages’ and update the
packages individually. This could be useful if any
packages have some problems updating, or if you
want to do the essential updates before running
out the house.

UPDATING
RETROPIE

http://magpi.cc/2lBHCRm

FEATURE

137Retro Gaming with Raspberry Pi

If you want to upload ROMs to the handheld,
you can do so with Raspberry Pi Zero W’s
wireless connection. Otherwise, you’d have to
manually load them onto the microSD card,
which would require dismantling the console to
get to your Raspberry Pi Zero – not particularly
easy or practical to do. Luckily, RetroPie
includes Samba and SFTP, which allow you to
transfer the files over the network.

For Samba it’s nice and easy: when your
handheld is connected to your network, you
can go to your main computer and find it on
the network shares as \\RETROPIE. Here you
can upload any necessary extra files to the
handheld with minimal hassle.

For SFTP you’ll have to make use of
special software. For Windows, the
RetroPie team recommend WinSCP
(magpi.cc/2lCwRhz); for macOS, you can try
Cyberduck (magpi.cc/2lCwjs9).

Once booted up, you can use the same SSH
settings as we used for PuTTY. You can then
drop the files into the corresponding folder in
the roms directory.

Otherwise known as netplay in emulation circles, this allows you to
play multiplayer games with friends, even if they’re on the other side
of the world! Not every emulator supports it and if it does, you need
to follow three extra rules: both parties need to be running the same
version of RetroArch, both must be running the same emulator, and
both need to be running the same ROM.

You then need to configure netplay from the setup script. If you’re
hosting, change your Netplay Mode to host, make the host IP your IP
address, and pick a nickname. The client (other player) needs to go to
the same menu, change Netplay Mode to client, change the host IP to
the other handheld, and pick your nickname. You may need to open up
a specific TCP/UDP port on the host’s router, which you then need to
set as the same on both systems.

Now both of you need to open the same ROM using the ‘js0’ key
(which should be X on a classic controller layout) and select ‘Launch
with netplay enabled’. If it’s been set up correctly, you’ll connect!

UPLOADING
FILES PLAYING

ONLINE

PIRATING VIDEOGAMES IS BAD,

NOT TO MENTION ILLEGAL!

Don’t use illegally downloaded

content on your PiGRRL.

magpi.cc/legalroms

CAUTION!

http://magpi.cc/2lCwRhz
http://magpi.cc/2lCwjs9

FEATURE

Build a portable console138

T wo of the superstars of the maker scene are Noé Ruiz and
Pedro Ruiz, otherwise known as the Ruiz Brothers. They’ve
done many amazing projects for Adafruit, including a lot of

3D printing and wearables, which always go down well with the
community. So it’s surprising to hear they’ve only been in the
maker scene for about five years.

“My brother and I purchased our first 3D printer in 2012 and
quickly started using it in our work,” Noé tells us. “While looking
for a way to integrate lighting into our 3D-printed designs, we
discovered Adafruit and the Arduino platform. We built some
projects using their parts and came up with some unique ideas.
We went on Adafruit’s weekly live show-and-tell show, and the
rest is history.”

What started off as a load of cool hacks that added LEDs to
existing products or enabled you to create great light-up projects
quickly evolved into doing more. Part of this was to do with the
introduction of Raspberry Pi.

“Our first project with Raspberry Pi was the DIY Wearable Pi
with Near-Eye Video Glasses,” explains Noé. “We were interested

PIGRRL HISTORY
How the PiGRRL project has evolved

PIGRRL
The original PiGRRL used the original Raspberry Pi
Model B to power it. It’s a lot bigger than the version
we’re building, although it more accurately matches
the size of an original handheld console.

PIGRRL 2
This should look familiar – this is the version we’ve
based ours on! It’s an upgrade over the PiGRRL as
it uses a lot more custom components, including a
custom PCB for the controls instead of a repurposed
board. You could easily switch a Raspberry Pi 3 or 4
in there if you wanted a bit more power.

We talk to the original creators behind the Pi GRRL and many other amazing Adafruit projects

MEET THE
RUIZ BROTHERS

PIGRRL ZERO
The latest version of the PiGRRL is a tiny device,
reminiscent of ultra-tiny gaming consoles. It uses
a Raspberry Pi Zero and a series of other small
components, all squeezed into a tiny little 3D-printed
case. Raspberry Pi Zero is still powerful enough to
run a lot of emulators, though.

FEATURE

139Retro Gaming with Raspberry Pi

RASPBERRY PI
MONSTER FINDER
> magpi.cc/2lKXpcA <
This project caused a little bit a stir at the time, as it
used some APIs that people possibly shouldn’t have
had access to. It would tell you if there were any
monsters in your immediate area, and even display a
coloured light for how rare the monster was.

NEOPIXEL YOYO
> magpi.cc/2lKRd4c <
A simple playground toy turned awesome with the use of
some NeoPixel LEDs. The yoyo itself is also 3D-printed,
allowing for custom parts so that you can fit the
electronics inside. It even has a USB charging port. Check
out the link for some cool GIFs of the yoyo in action.

ENERGY SWORD
> magpi.cc/2lKKSWC <
This one isn’t a completely custom build – instead,
it’s an upgrade/customisation of a pre-existing
energy sword toy. The Ruiz Brothers took the already
pretty cool design and added a ton of NeoPixels to
make it pulse with energy, similar to how fururistic
swords look in games.

MORE FROM THE
RUIZ BROTHERS
Other amazing things you can find
by Noé and Pedro

in Google Glass and thought we’d make a DIY version with
Raspberry Pi. We hacked apart a pair of video glasses, and designed
a custom 3D-printed housing for the display and driver. It was a fun
experiment and this is how we learned about Raspberry Pi.”

Things escalated even further when the brothers made the
original PiGRRL. Originally an idea from Limor Fried, founder of
Adafruit and ‘Ladyada’ herself, the idea was to improve upon her
earlier Game Grrl project but this time use a custom 3D-printed
enclosure. It was their biggest project to date, so they were
extremely happy to see that it had such a positive reaction.

The PiGRRL projects have since become the Brothers’ favourites
to work on, according to Noé.

“I think it’s become a classic Raspberry Pi project because it
looks like an iconic device that offers lots of playtime. People love
to play games, and being able to build your own gaming console is
super-rewarding. Every year we create a new version with better
hardware, and change the form factor to try different designs. So
many folks have built one and it’s really awesome to see parents
building them with their kids.”

What’s in the future for the PiGRRL and the Ruiz Brothers? Well,
PiGRRL 3 is happening with a “bigger screen and better audio”, and
should be a much quicker build. Watch this space!

http://magpi.cc/2lKXpcA
http://magpi.cc/2lKRd4c
http://magpi.cc/2lKKSWC

This step-by-step guide breaks down the key
stages of building the Princess Pinball table.
While your table could be very different, the key
components and techniques apply to a wide range
of builds.

Every pinball table will need a shooter, flippers,
bumpers, and rubbers. And tips – like using
adjustable legs to help you get the perfect angle
on your table – hold true across many different
build styles.

Similarly, Martin Kauss’s GPIO connection
configuration and software to run your table’s
lights, sensors, sound, and scoring are powerful
tools for any pinball build.

01 Set up the software
Start with a Raspberry Pi and a clean install

of Raspbian. You’ll need an internet connection,
and your life will be easier if you connect a monitor,

which we’ll also use later to track the player’s
score, keyboard, and mouse.

Open a Terminal window and type:

sudo apt install python-pygame
git clone https://github.com/bishoph/

pinball.git
cd pinball
python pinball_machine.py

Pressing Q exits the program. Fonts aren’t
included, so to run the program you’ll need to find
your own pinball.ttf and comicfx.ttf TrueType files
and copy them into /usr/local/share/fonts/ – both
are freeware and available online.

02 Vision on
Setting everything up is much easier if

you’ve got a monitor connected to your Raspberry

PINBALL MACHINE

A connector strip links
Raspberry Pi’s GPIO pins
to all of the electronics on
and under the playfield

This eight-channel relay board
is one of a pair that allows
Raspberry Pi to trigger the

table’s moving parts

MAKE YOUR OWN

FEATURE

Make your own pinball machine140

https://github.com/bishoph/pinball.git
https://github.com/bishoph/pinball.git
http://machine.py

Pi, but our pinball table’s Python scripts can also
make use of an external display. We’ll use this to
show the player’s current score, the number of
balls left to play, the table’s high score, and a few
fun visual effects.

If you’re feeling really sharp, you could use a
VESA mount to affix the monitor to a backboard or
stand attached to the table; or, if you’re working
with a bed frame like Martin, find space to attach
it to the one-time head of the bed.

03 Face the music
You can play sounds through the integrated

speaker of a monitor or by connecting speakers to
Raspberry Pi’s 3.5 mm audio output. Sounds are
defined in the effects.py script, which we installed
in Step 01. You’ll have to source your own audio
files – Martin got some from freesfx.co.uk.

Place them in the /home/pi/pinball/sounds
directory and edit effects.py accordingly. The
script triggers sounds when the table is powered
up, when your ball heads down the shooter alley,
when it falls out of play by going down the outlane,
and when it triggers the spinner or pop bumpers.

Samples in a bank called s2 are triggered as
random events when the table is idle.

04 Frame and fortune
Martin Kauss’s pinball table began life as

a child’s bed, decorated with colourful Disney
princess imagery, but you could also build your own
frame out of wood, buy a table base kit, or even
make one out of K’nex or Meccano.

The frame measures 145×77 cm and for the
playfield – the surface of the pinball table, where all
the action happens – Martin used a piece of 230 mm
thick multiplex board (plywood) with a black finish.

Beneath the playfield, you’ll need space for your
wiring and power supplies.

Flipper
Finger
Button

EOS Left

5 10 13 15

Z-Diode
214-8 N
6 RB
10%

Coil
FL 11630

Relay

Raspberry Pi

	 �Left flipper: the flipper fingers
are the table’s most complex
bit of wiring, and their circuit
includes a Zener diode for
voltage regulation

	 �As this early incarnation of
the flipper wiring shows, a
dedicated two-channel relay is
triggered by Raspberry Pi’s GPIO
pins to active the flipper coils

Test first
Make sure your

components

and connections

work as

intended before

you permanently

screw them

into place.

FEATURE

141Retro Gaming with Raspberry Pi

http://freesfx.co.uk

05 More power, Igor!
This build calls for both a 5 V PSU, which

handles the lights, and a 36 V one for the coils used
to power the flippers and bumpers, which have
comparatively high voltage requirements.

For example, although the pop bumper’s coil is
connected to the 36 V supply, its built-in LED light,
like those elsewhere on the table, is powered by the
5 V PSU. For ease of connection, a GPIO stacking
header is mounted on Raspberry Pi’s GPIO.

From that, GPIO cables run to a connector strip.
That includes both inputs and outputs, and all
powered components such as lights and coils are
wired up via relay boards. The relays are powered
from Raspberry Pi (via physical pins 2 and 6)
and the trigger action for each comes from the
respective output GPIO pin.

It’s useful to screw a small four-way plug bar to
the rear or underside of your table, as you’ll need
separate power supplies for your monitor and
Raspberry Pi.

06 Tilt! Tilt! Tilt!
Pinball tables can’t be flat, but getting

the correct angle to ensure that the ball rolls
towards the bottom at the correct speed can be
tricky. Adjustable legs mean that you can easily
set and change the table’s incline.

In this case, four square wooden battens
measuring 4.5×4.5×100 cm at the front and
4.5×4.5×110 cm for the rear have been used
to make front and rear legs. The front pair
have been made adjustable by using screw-in
plastic feet which can be raised or lowered,
allowing for a bit of trial-and-error engineering
during construction.

07 Plan, sketch & drill
Once you’ve got your frame and a table

surface to fit it, it’s time to outline its features.
Carefully measure, test-place, photograph, and
draw around the flippers, shooter, slingshot, and

	 �Spinner: the spinner itself is
passive, but a microswitch is
activated every time the ball
flips it, triggering scoring,
sound, and lights

	� You’ll need a healthy
selection of tools, electronic
components, and other parts
for a project like this, as well
as the space to build it

Warning!
High Voltage!

The pinball machine
uses a relay to control
high voltage. Please

be careful when using
mains electricity.

FEATURE

Make your own pinball machine142

bumpers you want to include. You’ll also want
to place side-mounted flipper buttons.

As well as these components, you’ll need to use
wood and metal strips for your lanes, an outlane
area to direct the ball back to the shooter alley
when it’s lost, and the curved upper part of the
table. Once you’ve marked up and double-checked,
drill the holes you’ll need to bolt on and wire up
your components.

Remember to leave enough space at the bottom
of the table for your electronics and Raspberry Pi!

08 Assemble the plunger
The plunger, also known as the ball shooter,

is the first critical bit of your table to assemble. You
can buy the whole assembly as a kit, including a
rod, springs, housing, and mounting components
such as the external trim plate.

You’ll want to put it at the left of your table,
with the knob and external parts protruding
from the front of your pinball machine. A
length of wooden batten forms the lane that
the ball will travel down, and the drain beneath
the flippers should direct lost balls back to the
shooter assembly. A high-tension spring holds
a lane closure flap shut until it’s forced open
by the velocity of the ball coming through from
the shooter.

09 They see me rollin’
Most of the lanes and structural parts of

this design are made from wood or aluminium strip
bent into shape and held in place using wooden
blocks screwed into the table, all of which makes
for a pretty forgiving build. But you’ll want your
Raspberry Pi to be able to tell when the ball passes
through those lanes.

For that, you’ll need some rollover
microswitches from a pinball part supplier, which
you can fit to the table from below. Cut a channel

 �Remember to leave
enough space at the
bottom of the table
for your electronics

	 �The pop bumper is assembled
with its coil below the table
and its skirt and cap above

in the playfield using either a router or a drill and
jigsaw. Mount the switch on a strip of wood, and
position it beneath the channel so that the switch
protrudes enough to be triggered by the weight of
the ball as it passes.

This build has rollover switch at the end of the
shooter alley and on all the outlanes that take

FEATURE

143Retro Gaming with Raspberry Pi

the ball out of play, plus one at the very end, just
before the ball re-enters the shooter alley, so the
table knows when the ball leaves the playfield.

They’re all connected to Raspberry Pi’s GPIO
header – via a connector strip – so they can trigger
events such as lights sound and scoring.

10 Flip the finger
A pinball table’s flippers are its most

important components. You’ll need a 36 V, 5 A PSU
to give the flipper coils enough of a kick, and a
two-channel relay to activate them when triggered
by Raspberry Pi’s GPIO.

Because we’re using a Raspberry Pi to control
everything, we’ll need a modern flipper assembly
with a normally open (NO) end-of-stroke (EOS)
switch. The coils are mounted beneath the table’s
flipper fingers. For each flipper, you’ll need to
connect a button on the side of the cabinet to one
GPIO pin, the EOS switch to another, and then
another two pins – via the relay – to the flipper coil
units, which actually have two different wire coils
wrapped around them.

The first coil, HIGH, provides low resistance
and makes the flipper finger move hard and fast,
while the second, HOLD, has high resistance and
allows you to hold down the flipper buttons to keep
them upright.

	 Pin	 Connector Strip Terminal	 Type	 Description	 Relay Connection

	 3	 1	 IN	 Flipper button right

	 5	 2	 IN	 Flipper button left

	 8	 3	 IN	 Flipper finger EOS right

	 10	 4	 IN	 Flipper finger EOS left

	 7	 5	 IN	 Spinner microswitch

	 11	 6	 OUT	 Flipper finger right HIGH	 Relay #1,1

	 12	 7	 OUT	 Flipper finger right HOLD	 Relay #1,2

	 13	 8	 OUT	 Flipper finger left HIGH	 Relay #2,1

	 15	 9	 OUT	 Flipper finger left HOLD	 Relay #2,2

	 16	 10	 IN	 Shooter alley microswitch

	 18	 11	 IN

	 19	 12	 IN

	 21	 13	 IN

	 22	 14	 IN	 Bumper #1 switch

	 23	 15	 IN	 Bumper #2 switch

	 2	 16	 IN	 Slingshot switch

	 26	 17	 OUT

	 29	 18	 OUT

	 31	 19	 OUT

	 32	 20	 OUT	 Light #1, shooter alley	 Relay #3,1

	 33	 21	 OUT	 Light #2, slingshots	 Relay #3,2

	 35	 22	 OUT	 Light #3, bumper	 Relay #3,3

	 36	 23	 OUT	 Light #4, bumper	 Relay #3,4

	 37	 24	 IN	 Outlane microswitches, one signal!

	 38	 25	 IN	 Bumper #1, coil	 Relay #4,1

	 40	 26	 IN	 Bumper #2, coil	 Relay #4,2

Go online
for more
details
For extra

information

and a maker’s

blog about the

Princess Pinball

table, check out

Martin Kauss’s

website at

magpi.cc/iimYKq

FEATURE

Make your own pinball machine144

http://magpi.cc/iimYKq

Fingers
to yourself
Don’t touch

the coils or

moving parts

during testing,

as the rapid

contraction of

the solenoid

can deliver a

painful pinch.

11 Into the slingshot
Slingshot bumpers are the wedge-shaped

components positioned just above your flippers,
helping to bounce your ball back to them on its
journey around the table.

They’re made up of a set of star posts – brightly
coloured plastic mounts that a rubber ring can
fit around and a rubber surround for the ball to
bounce off. A microswitch sensor detects when the
ball hits, racking up points, and triggering noises
and lights.

A pair of fancy slingshot covers rounds out the
look, and a lane – made of wood – runs below them
to provide a route to the flippers.

12 Add a bumper or two
Mushroom-shaped pop bumpers are among

the most iconic elements of a pinball table. They’re
available in complete kits and most work by
detecting, via an integrated microswitch, when the
ball hits their plastic skirt. A coil then pulls down
the bumper’s rod and ring assembly to kick the
ball away.

You can use the bumper’s base to mark out
where you want to mount it, with the coil mounted
below the playfield surface. The coils are powered
by the 36 V PSU and connected to Raspberry Pi via
the eight-channel relay.

13 Add a spinner, connected
via screw terminals

A spinner, or spinning target, is a classic
pinball table component with its own lane and
a microswitch that triggers lights and a score
increment when the player hits it.

Here, the lane is created using a metal rail
of aluminium threshold strip. The spinner is
mounted using some DIY-shop metal brackets
and bolts, plus star posts and rubber rings from
a pinball supply firm.

A straight-wire actuator microswitch is
connected to the spinner to detect the ball’s
passage and rack up points and flash lights
around the table in response.

14 Lights! Action!
A pinball table is nothing without flashing

lights. This project uses a 2 m LED light strip
connected to the 5 V PSU to add some pizzazz to
the table’s shooter alley and orbit – the upper loop
of aluminium strip that helps keep the ball rolling
around the table.

There are also individual lights in each of two
bumpers and the slingshot bumpers – a total of
four GPIO connections on Raspberry Pi. The Python
script we’re running will activate the lights when
the ball enters the playfield, hits bumpers, triggers
the spinner, or passes over rollover switches. The
lights are also triggered by the script at random
events if there is no input or action on the table.

	� The Princess Pinball table
has proven to be a massive
hit with Martin’s kids and all
their friends, complete with
requests for a future multi-
ball feature

FEATURE

145Retro Gaming with Raspberry Pi

FEATURE

Build an arcade machine146

A s kids, many of us dreamed
about owning arcade
machines when we grew

up. Whether they were early
classics or visually incredible
mainstays, the idea of having a
little slice of our local arcade just
sitting in our living room was
extremely appealing.

The reality in 2017 is not great,
with arcade machines getting
old and maintenance becoming
prohibitively expensive. We could
talk to you at length about the
importance and cost of video
game preservation, but instead
we’re going to show you how to go
one better than a grungy arcade
cabinet with dodgy sound, to build
your own perfect and brand new
arcade emulation machine with
Raspberry Pi and a bit of elbow
grease. Insert some credits and
let’s start.

Grab some wood, a Raspberry Pi, and some quarters
and let’s take it back to the 1980s

This arcade build
was made by
Bob Clagett of

I Like to Make Stuff
iliketomakestuff.com

FEATURE

147Retro Gaming with Raspberry Pi

Build an arcade machine148

FEATURE

T his is not a small project,
so you’ll need to have
plenty of tools for this

job. Bob built this with a lot of
precision, although at some
steps you can make do with
something a little simpler if you
don’t have the specific tool.

All you need to build your
dream arcade machine

TOOLS
JOB

Get Bob’s digital
plans for the arcade

cabinet online:
magpi.cc/2yboyPp

CIRCULAR SAW

DRILL/DRIVER

ROTARY TOOL

JIGSAW

UTILITY KNIFE

CLAMPS

MEASURING TAPE, STEEL RULER & PROTRACTOR

CABINET MATERIALS
48″ (122 cm) piano hinge

24″ (61 cm) soft-close drawer slides

2 × ½″ (12.7 mm) overlay face frame concealed hinge (optional)

Magnetic catch (optional)

¾″ (19 mm) T-moulding (optional) - magpi.cc/2ybmvus

SOLDERING IRON

Plywood (recommended) for the exterior, MDF for inside

WARNING! Not all these tools are
necessary. Read through the build
first to figure out what you’ll need.

http://magpi.cc/2yboyPp

149Retro Gaming with Raspberry Pi

FEATURE

What you need to make – and power – your retro cabinet

Want to copy Bob’s
build exactly?

Find his parts list
on his blog:

magpi.cc/2yU6whx

27″ LCD MONITOR
Old-school arcades used CRT screens
with high voltage. They are extremely
dangerous! Modern LCDs work better.

RASPBERRY PI
The brains of your entire project.
We recommend a Raspberry Pi 3 or 4.

COMPUTER SPEAKERS
Want to hear your games?
You’ll need speakers.

SPEAKER GRILLES
magpi.cc/2ybuZ58
These allow you to hear what’s
playing through the speakers.

LED ARCADE BUTTONS
shop.pimoroni.com
Bash these buttons.
You can get them from Pimoroni.

ARCADE JOYSTICK		
magpi.cc/CeLknL
Joysticks is the name of a bad eighties
comedy. These are better.

I-PAC
magpi.cc/2yDyLFi
This makes connecting your controls
to Raspberry Pi as easy as…

12 V POWER SUPPLY
Want to light up your cool LED arcade
buttons? They need power.

SWITCHES &
ASSORTED WIRES

ELECTRICAL COMPONENTS

ARDUINO UNO
A microcontroller to control
some of the electronics.

LED STRIPS
Cool lights for your new
retro cabinet.

PIR SENSOR
A motion sensor unique
to this specific build.

RELAY SHIELD
Building power control into
the project? You’ll need this.

OPTIONAL

http://magpi.cc/2yU6whx
http://magpi.cc/2ybuZ58
http://magpi.cc/2yDyLFi

Build an arcade machine150

FEATURE

He was a carpenter before he was a plumber. Time to borrow his old skills

LET’S GET BUILDING
MEASURE TWICE01
If you’ve bought Bob’s design, you
can start measuring out the side
panels on the plywood. If you want
to go with your own design, make
sure to do some research on the
shape of the style of arcade cabinets
you want to go with, and plan it out
on paper or with CAD software first.

CUT ONCE02
Begin cutting your panels out with
your circular saw. Cut as close to the
corners as you can and use a jigsaw
or handsaw to finish them off. You
can use this first side panel to trace
an outline for the second side panel
if you wish.

STRUCTURAL INTEGRITY03
Now it’s time to measure and
cut out the main structure of the
cabinet between the side panels
using MDF sheets; this includes
two MDF panels to hold the side
panels together – albeit with
a twist.

HIDDEN DRAWERS04
In this build, one of the sides can
open to reveal six hidden drawers.
This is great for easily accessing
the electronics inside and also
using the cabinet for storage. Draw
reference lines for six of the drawer
sliders on each side and then
attach them.

FEATURE

Retro Gaming with Raspberry Pi 151

TOP TO BOTTOM05
Make the top and bottom panels
out of MDF and attach them using
screws. Bob also added a bit of
glue, but reckons it’s not entirely
necessary. Add a bit of scrap wood
in the open side, just to help keep
the shape for now.

FRONT BOOKSHELF06
As well as drawers, there are
hidden shelves inside the cabinet.
These go at the front of the build
and are short enough to be hidden
by the front of the side panel.
Create the basic rectangle/square
shape of the shelves, and then add
1-inch (25.4 mm) spacers to the
bottom of the frame before adding
the bottom shelf on top for added
strength and support.

SHELF FASCIA07
Using the plywood, add a fascia to
the front of the shelves to bring
some consistency to the build.
It will also look a bit nicer than
the MDF on its own! These can be
glued in place, but make sure they
sit flush.

ADD SHELVES08
Create two shelves out of plywood
and screw them into place. Use
your tools to make sure they’re
inserted straight and level.

You can also make doors for
the shelves using extra plywood!

FEATURE

FEATURE

Build an arcade machine152

FEATURE

COMBINE THE STRUCTURE09
Using clamps, make sure the
rear cabinet section and front
bookshelf section are properly
lined up, and then drive screws
through the back cabinet section
to connect the two.

ADD A SIDE10
Use clamps again to line the
permanent cabinet side up with
the side of the build. Make sure
it’s the opposite side to where
you want the slide-out drawers to
open. Screw it in on both the back
cabinet and front shelf section to
make sure it’s secure.

TAKE SOME
MEASUREMENTS11
For the classic top of the arcade
cabinet (where we’ll house the
speakers), you need to measure
around the top of the side panel
that’s jutting out over and in front
of the back pieces. Draw some
guidelines starting from 1 inch
(25.4 mm) away from the edge, and
take into account the width of the
wood, so you can figure out the
exact size of the top piece.

FAKE SIDE PIECE12
One side of the cabinet is going to
swing open, which won’t be good
for the structure of the top piece.
Create an extra top corner piece to
help support the top bit, and screw
it into place..

FEATURE

153Retro Gaming with Raspberry Pi

FEATURE

ADD SOME SUPPORT13
Use scrap pieces on the fixed side
to add support to the top piece –
make sure they’re inside the lines
you measured out in Step 11.

CUT THE TOP PIECE14
Using all your measurements,
cut the very top piece for the
top section. Use your protractor,
digital or otherwise, to create the
mitre on the piece so the parts will
fit together smoothly. Attach it to
the supports with screws.

TOP BACK COVER15
Bob cut a panel for the back
cover and laid it over the top –
it’s not nailed down, so you can
quickly access the inside of the
top sections.

SPEAKER PANEL16
The bottom panel of the top
section is where the speakers
will be attached. Again, using the
guides you’ve made, cut out the
piece and check to see if it fits.

154 Build an arcade machine

FEATURE

SPEAKER HOLES17
Disassemble your speakers and
draw the outline of where you
want to place them on the panel.
Bob used a pencil to draw a couple
of lines across the outline to find
their centre, and then cut a big
hole into it with a drill. Once
you’ve cut the hole, double-check
that the speakers line up with it.

ADD THE SPEAKER PANEL18
Screw in the speaker panel
to the top sections.

MARQUEE PREP19
The front of the top section is used
for the marquee, the front art, or
lights in this case. To make the
front look a little smarter, Bob
added another bit of scrap wood
just inside the hole to create a
flush surface to add a better fascia
onto the top section.

CONTROL BOX20
Bob made a simple
tray-like piece
that will house the
controls. It sits on
top of the shelves at
the front and does
not extend beyond
the dimensions of the
side panels.

FEATURE

CONTROL BOARD21
The board where the buttons and
joystick will live merely covers
this box. Bob added some blocks
to the underneath of this board so
that it can just easily and snugly
rest on top of the control box for
easy access.

MONITOR PANEL22
The monitor panel needs to be
angled so you can look down and
see the screen. Cut and mitre a
piece of plywood so that it fits in
the confines of side panel, top
unit, and control board. Cut a hole
in the centre to the size of the
monitor you plan to use.

MONITOR SUPPORTS23
Add a little strip of wood, mitred
to the angle of the monitor panel,
onto the control board to help
support the panel. This way you
don’t have to permanently attach
the monitor panel to the cabinet.

CUT THE BUTTON HOLES

24

Mark the holes for the buttons and
joystick on the control board and
cut them out.

Bob went one
step further and

used a CNC
machine to cut

holes that gave the
illusion of a curved

CRT TV, like in
classic machines!

Bob cut the strip into
several small pieces that

interlocked, with one piece
on the control board and
one on the monitor panel

for extra stability.

FEATURE

FEATURE

BRACE
THE MONITOR25
Tape down the monitor and
measure to make sure it’s
correctly centred. Add two
blocks to either side and
then attach a piece over
them to snugly clamp the
monitor in place over the
hole you created for it.

MAKE THE DRAWERS26
Remember the drawer runners
we added to the rear section of
the cabinet? It’s time to make
the drawers for them. You
can make them simply with a
bottom and four sides if you
wish, as long as it will fit. Don’t
add the runners yet, though.

AINT EVERYTHING!27
It’s time to paint the cabinet! Use
some masking tape to cover up
anything you’d rather not paint
(like the runners) and get to it.
You can use varnish or spray paint
– Bob used a spray gun and did a
light bit of sanding between coats.
You’ll need plenty of room for this!

28

If you want
to add vinyls,

add them when
the paint is dry!

ADD THE BUTTONS

Once the paint is dry, you can add
the buttons and joystick to the
control board. Affix them in place
with screws.

If you want to add the
T-moulding, you can do that
now! Cut a small indent into
the edge of the side panels
and then use a rubber mallet
to gently knock it into place.

FEATURE

157Retro Gaming with Raspberry Pi 157

ADD THE MARQUEE29
In this build, the marquee is a
print on something like clear
acrylic so it can be lit up from
inside. If you are doing something
like this, merely glue it into
the little hole of the top unit.
Otherwise, attach a final piece
of plywood to fill the hole. Paint
a cool little graphic on there,
though: it will look good.

ADD THE
SPEAKERS30
Add the speaker
grilles to the outside
of the top unit with
screws, and then
screw in the speakers
on the inside.

FINISH
THE DRAWERS31
Remove one part of
the runners for the
drawers and carefully
attach them to the
side of the painted
drawers before
slotting them in.

32 CABINET DOOR

Cut the piano hinge in half
with a rotary tool, before
attaching the halves to
the back board on the
open side of the cabinet.
Attach the other side to
the back edge of the side
panel so that it can open
and close. The standard
build is now complete!

Want to do more?
The original tutorial on
Bob’s website shows

you how to add
motion-activated LEDs
to the build – great
for a party piece:

magpi.cc/2hBcDQK

FEATURE

http://magpi.cc/2hBcDQK

FEATURE

CONFIGURE RETROPIE

Here’s how to get your beautiful new cabinet to play some games

RASPBERRY PI
SET UP

GET RETROPIE

Head to the RetroPie website and grab the latest
image of RetroPie (magpi.cc/25UDXzh). You’ll
then need to install it to an SD card using Etcher
– you can follow along to our tutorial video to do
this if it’s your first time: magpi.cc/etchervid.

S tand back and admire your
work. You’ve built an arcade
machine with your own fair

hands! It’s quite the achievement.
We’re not quite done yet, as we
need to get your Raspberry Pi set
up and everything connected. In
comparison, this is the easy part.

INITIAL SETUP

Put the microSD card in and
boot up your Raspberry Pi. Go
through the initial setup just
to get it going – you’ll have to
do the controller configuration
again once you install it into
the cabinet, though.

LOAD YOUR ROMS

It’s best to get your ROMs loaded
onto microSD card before you
put your Raspberry Pi into the
arcade cabinet. You can still take
it out later to add more ROMs,
as we built it to be accessible.
Find the info on how to do this
here: magpi.cc/2hBznjB.

http://magpi.cc/25UDXzh
http://magpi.cc/etchervid
http://magpi.cc/2hBznjB

FEATURE

159Retro Gaming with Raspberry Pi 159

PREPARE THE WIRES

As we’re using light-up buttons, we need to provide
power for the LEDs in them. You can do this by
creating a daisy chain of power and ground wires
that will connect all the lights. This is most neatly
done by adding them to female plugs that slot onto
each button’s connectors. You’ll also need individual
wires for each button and joystick output, and a
daisy chain of connectors like the power and ground
ones for the ground connections of the inputs.

WIRE IT UP

Connect the individual control wires and input
ground to the corresponding ports on the I-PAC
board, and also connect your daisy-chained power
and ground wires to the buttons/joysticks on one end
and the screw terminal at the other.

CONNECT TO RASPBERRY PI

The I-PAC can now be connected to Raspberry Pi
using the USB cable. Load up control configurations
to set the correct inputs for players one and two.

THE CONTROL BOX

Your Raspberry Pi can now live in the control
box under the buttons. All you need to do is run
power for Raspberry Pi and the HDMI cable for
the monitor through the box – you can do this
with some well-placed holes behind the monitor
or through the back of the cabinet.

POWERING IT ALL

You’ll need several plugs to power all of this, even
in its most basic configuration. Raspberry Pi, LEDs
in the buttons, and monitor will all need power.
You can just plug them all into the wall, but we
suggest getting a (surge-protected) power strip
and plugging all the parts into that. Have a lead
run out of the back to plug it in and turn the whole
system on. If you’re doing Bob’s full build, you can
go a bit further and add a relay switch and more.

TURN IT ON!

You’re ready to
game. Get a soda
and some Doritos
to complete
the experience
and enjoy your
own personal
arcade cabinet.
Happy gaming!

CONNECT IT ALL UPWIRE UP THE CONTROLS

FEATURE

FEATURE

Build an arcade machine160

OTHER ARCADES
Want an arcade machine, but would like to try something a little
different than our build? Here are some alternatives…

SUPER PIE

Still want a classic arcade cabinet you can
stand up, but don’t want to bother with the
extra storage? Pierre Sobarzo’s Super Pie is a
simpler build, albeit with many of the same
considerations for electronics. His also has
coin slots for added authenticity.

The Imgur album doesn’t quite have the
same build instructions, but you can absolutely
use it as a guide to simplify the build on the
previous pages.

magpi.cc/2yFTPes

160 Build an arcade machine

http://magpi.cc/2yFTPes

FEATURE

161Retro Gaming with Raspberry Pi 161

BARTOP
ARCADE MACHINE

What makes up the arcade experience? Do you
have to be in the corner of the room standing
at a bulky device purely to play games? Bartop
arcade machines like the Galactic Starcade
take up less space, but still give the arcade
experience of playing with a stick.

This build is also a lot easier to do as you
don’t have to paint and move a massive
wooden structure around. You can also just
plonk it on a table when you want to get it out
and play some of your favourite games.

magpi.cc/1qOxaVh

PIK3A

The cocktail arcade machine is a popular old-
school variant of the traditional arcade cabinet,
especially for custom builds. It allows you to
use the space as a table as well, and two players
don’t have to crowd around one side of the
machine to play multiplayer.

This Pik3a uses the LACK side table from IKEA
in its construction, giving it a very unique look,
but there are plenty of other cocktail arcade
machines you could take inspiration from.

magpi.cc/1qOxwLG

FEATURE

http://magpi.cc/1qOxaVh
http://magpi.cc/1qOxwLG

FINAL WORD

Remember. Create.162

I reviewed the first Raspberry Pi
Model B, but it took a while for
me to click with it. As Raspberry

Pi iterations became more powerful,
their capabilities intersected with
the needs of my other projects.

Preserving the past
A Raspberry Pi 3 is also key to my
interest in software preservation
and emulation. I have a lot of classic
computers and consoles, but it’s my
Raspberry Pi-based emulation box that
I often get out when I want to show
someone what gaming felt like in the
1980s and 1990s. It fits in a pocket
and doesn’t run the risk of a capacitor
going fizz at a crucial moment.

But it’s about more than playing
well-loved games that are otherwise
unlikely to see a re-release. There are
whole classes of games and software
that are at imminent risk of being
lost to history, and Raspberry Pi
provides a useful test bed for getting
many of them running, assessed,
and documented.

While there’s no chance that we’ll
lose Doom, Ultima IV, or Lemmings,
preservation is less certain for
novelty screensavers, cheap

CD‑ROM compilations of fascinating
Windows 95 ‘shovelware’, 3.5-inch
floppies packed with cheat tools and
‘trainers’ to boost your RPG party’s
stats, or Java phone games.

I’m using a Raspberry Pi to find
working versions of games like
Rovio’s Darkest Fear survival-

horror/puzzle series – released long
before Angry Birds was a hit – and
the elusive feature-phone version
of Fallout 1, with the intention of
curating an online archive.

Coding the future
But I most love Raspberry Pi for
the opportunities it holds for new
developers of all ages. Despite
numerous unfinished projects and
false starts, I didn’t release my first
game – the text adventure ‘Eight
characters, a number, and a happy
ending’ – until my mid-30s.

While I don’t exclusively develop
on a Raspberry Pi, it’s what got me
back into programming. It reminded
me that I could write software for the
joy of it; for the pleasure of puzzling
out the logic and structure needed to
create a meaningful experience in a
few lines of code.

Like home microcomputers of the
1980s, Raspberry Pi can turn anyone
into a bedroom programmer, ready to
join the thrilling indie, art games, and
wonderfully glitchy trashgames scenes
born of widespread internet access and
high-quality, free development tools
like Twine and PICO-8.

K.G. Orphanides on silence, preservation, and the joy of trashgames

Remember. Create.

K.G. Orphanides

K.G. is a writer, developer, and software
preservation enthusiast with a penchant for
narrative games, nineties CRPGs, and owlbears.

@KGOrphanides

A
U

T
H

O
R

 �Write software for the pleasure of puzzling
out the logic and structure needed to create a
meaningful experience in a few lines of code

https://twitter.com/kgorphanides?lang=en

Inside:
• Learn how to set up your Raspberry Pi,

install an operating system, and start using it

� • Follow step-by-step guides to code your
own animations and games, using both the

Scratch 3 and Python languages

• Create amazing projects by connecting
electronic components to Raspberry Pi’s

GPIO pins

Plus much, much more!

The only guide you
need to get started
with Raspberry Pi

£10 with FREE
worldwide delivery

THE OFFICIAL

Beginner’s Guide
Raspberry Pi

Buy online: magpi.cc/BGbook

Now
includes

Scratch 3
projects!

http://magpi.cc/BGbook

Retro Gaming with Raspberry Pi shows you
how to set up a Raspberry Pi to play classic games.

Build your own portable console, full-size arcade
cabinet, and pinball machine with our step-by-step
guides. And learn how to program your own games,

using Python and Pygame Zero.

 Set up your Raspberry
Pi for retro gaming

 Emulate classic
computers and consoles

 Learn to program 	
retro-style games

 Build a portable
console, arcade cabinet,
and pinball machine

Price: £10

	001 Retro Gaming COVER DIGITAL
	002 Retro Gaming_AD Essentials_PK1
	003 Retro Gaming WELCOME_PK1_LH_PK2
	004-005 Retro Gaming bookazine_CONTENTS_PK1_PK2_SR_LH_SR2_PK3_SR3_PK4_SR4
	006-007 Retro Gaming bookazine_Section Intro_Setup_PK1_PK2_LH
	008-013 Retro Gaming bookazine_PK1_LH_PK2
	014-017 Retro Gaming bookazine_Lakka_PK_LH_SR_PK2_LH_PK3_LH
	018-019 Retro Gaming_AD_SUBS_PK
	020-021 Retro Gaming bookazine_Section Intro_Retro Hardware_PK1_LH_PK2_LH
	022-023 Retro Gaming bookazine_PiCade_PK1_SR_LH_PK2
	024-025 Retro Gaming bookazine_TinyPi_PK1_LH_PK2
	026 Retro Gaming bookazine_Wireless Controller_PK1_LH_PK2_SR_PK3
	027 Retro Gaming_AD Wireframe_PK
	028-029 Retro Gaming bookazine_Joystick_PK1_LH_PK2
	030-031 Retro Gaming bookazine_PiDP11_PK1_LH_PK2
	032-033 Retro Gaming bookazine_Section Intro_Computing_PK1_LH_PK2_LH
	034-035 Retro Gaming bookazine_Retro Computers_PK1_LH_PK2
	036-037 Retro Gaming bookazine_Emulators_PK1_LH_PK2
	038-041 Retro Gaming bookazine_Spectrum Pi_PK1_LH_SR
	042-043 Retro Gaming bookazine_Amiga Pi_PK1_LH_SR
	044-045 Retro Gaming bookazine_Commodore monitor_PK1_LH_PK2
	046-047 Retro Gaming bookazine_Section Intro_Make Games_PK1_LH
	048-053 Retro Gaming bookazine_Pygame Zero_PK1_SR_LH_SR2_PK2
	054-059 Retro Gaming bookazine_Simple Brain_PK1_SR_LH_PK2
	060-065 Retro Gaming bookazine_Scrambled Cat_PK1_LH_PK2
	066-073 Retro Gaming bookazine_Pivaders_PK1_SR_LH_PK2
	074-081 Retro Gaming bookazine_Pivaders 2_PK1_SR_LH_SR2_PK2
	082-089 Retro Gaming bookazine_PiMan_PK1_SR_LH2
	090-098 Retro Gaming bookazine_PiMan 2_PK1_SR_LH_PK2_PK3
	099 Retro Gaming_AD_Get Started_LH
	100-105 Retro Gaming bookazine_AmazeBalls_PK1_SR_LH_PK2_PK3
	106-111 Retro Gaming bookazine_AmazeBalls 2_PK1_SR_LH_PK2
	112-117 Retro Gaming bookazine_AmazeBalls 3_PK1_SR_LH
	118-119 Retro Gaming bookazine_Section Intro_Arcade Projects_PK1_LH
	120-121 Retro Gaming bookazine_Lunchbox_PK1_SR_LH_PK2
	122-125 Retro Gaming bookazine_4D Arcade_PK1_LH
	126-139 Retro Gaming bookazine_Portable console_PK1_SR_LH_PK2_SR2_LH
	140-145 Retro Gaming bookazine_Pinball Machine_PK1_LH2_PK2
	146-161 Retro Gaming bookazine_Arcade Machine_SR_SR2_PK1_LH_SR3_PK2
	162 Retro Gaming FINAL WORD_LH_PK
	163 Retro Gaming_AD_BeginnersGuide_LH
	164 Retro Gaming OBC_PK1_LH

